939 resultados para Abies, cone scales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the core challenges of biodiversity conservation is to better understand the interconnectedness and interactions of scales in ecological and governance processes. These interrelationships constitute not only a complex analytical challenge but they also open up a channel for deliberative discussions and knowledge exchange between and among various societal actors which may themselves be operating at various scales, such as policy makers, land use planners, members of NGOs, and researchers. In this paper, we discuss and integrate the perspectives of various disciplines academics and stakeholders who participated in a workshop on scales of European biodiversity governance organised in Brussels in the autumn of 2010. The 23 participants represented various governmental agencies and NGOs from the European, national, and sub-national levels. The data from the focus group discussions of the workshop were analysed using qualitative content analysis. The core scale-related challenges of biodiversity policy identified by the participants were cross-level and cross-sector limitations as well as ecological, social and social-ecological complexities that potentially lead to a variety of scale-related mismatches. As ways to address these cha- llenges the participants highlighted innovations, and an aim to develop new interdisciplinary approaches to support the processes aiming to solve current scale challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil–Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As weather and climate models move toward higher resolution, there is growing excitement about potential future improvements in the understanding and prediction of atmospheric convection and its interaction with larger-scale phenomena. A meeting in January 2013 in Dartington, Devon was convened to address the best way to maximise these improvements, specifically in a UK context but with international relevance. Specific recommendations included increased convective-scale observations, high-resolution virtual laboratories, and a system of parameterization test beds with a range of complexities. The main recommendation was to facilitate the development of physically based convective parameterizations that are scale-aware, non-local, non-equilibrium, and stochastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution surface wind fields covering the global ocean, estimated from remotely sensed wind data and ECMWF wind analyses, have been available since 2005 with a spatial resolution of 0.25 degrees in longitude and latitude, and a temporal resolution of 6h. Their quality is investigated through various comparisons with surface wind vectors from 190 buoys moored in various oceanic basins, from research vessels and from QuikSCAT scatterometer data taken during 2005-2006. The NCEP/NCAR and NCDC blended wind products are also considered. The comparisons performed during January-December 2005 show that speeds and directions compare well to in-situ observations, including from moored buoys and ships, as well as to the remotely sensed data. The root-mean-squared differences of the wind speed and direction for the new blended wind data are lower than 2m/s and 30 degrees, respectively. These values are similar to those estimated in the comparisons of hourly buoy measurements and QuickSCAT near real time retrievals. At global scale, it is found that the new products compare well with the wind speed and wind vector components observed by QuikSCAT. No significant dependencies on the QuikSCAT wind speed or on the oceanic region considered are evident.Evaluation of high-resolution surface wind products at global and regional scales

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational evidence is scarce concerning the distribution of plant pathogen population sizes or densities as a function of time-scale or spatial scale. For wild pathosystems we can only get indirect evidence from evolutionary patterns and the consequences of biological invasions.We have little or no evidence bearing on extermination of hosts by pathogens, or successful escape of a host from a pathogen. Evidence over the last couple of centuries from crops suggest that the abundance of particular pathogens in the spectrum affecting a given host can vary hugely on decadal timescales. However, this may be an artefact of domestication and intensive cultivation. Host-pathogen dynamics can be formulated mathematically fairly easily–for example as SIR-type differential equation or difference equation models, and this has been the (successful) focus of recent work in crops. “Long-term” is then discussed in terms of the time taken to relax from a perturbation to the asymptotic state. However, both host and pathogen dynamics are driven by environmental factors as well as their mutual interactions, and both host and pathogen co-evolve, and evolve in response to external factors. We have virtually no information about the importance and natural role of higher trophic levels (hyperpathogens) and competitors, but they could also induce long-scale fluctuations in the abundance of pathogens on particular hosts. In wild pathosystems the host distribution cannot be modelled as either a uniform density or even a uniform distribution of fields (which could then be treated as individuals). Patterns of short term density-dependence and the detail of host distribution are therefore critical to long-term dynamics. Host density distributions are not usually scale-free, but are rarely uniform or clearly structured on a single scale. In a (multiply structured) metapopulation with coevolution and external disturbances it could well be the case that the time required to attain equilibrium (if it exists) based on conditions stable over a specified time-scale is longer than that time-scale. Alternatively, local equilibria may be reached fairly rapidly following perturbations but the meta-population equilibrium be attained very slowly. In either case, meta-stability on various time-scales is a more relevant than equilibrium concepts in explaining observed patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sun-Earth connection is studied using long-term measurements from the Sun and from the Earth. The auroral activity is shown to correlate to high accuracy with the smoothed sunspot numbers. Similarly, both geomagnetic activity and global surface temperature anomaly can be linked to cyclic changes in the solar activity. The interlinked variations in the solar magnetic activity and in the solar irradiance cause effects that can be observed both in the Earth's biosphere and in the electromagnetic environment. The long-term data sets suggest that the increase in geomagnetic activity and surface temperatures are related (at least partially) to longer-term solar variations, which probably include an increasing trend superposed with a cyclic behavior with a period of about 90 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing recognition that agricultural landscapes meet multiple societal needs and demands beyond provision of economic and environmental goods and services. Accordingly, there have been significant calls for the inclusion of societal, amenity and cultural values in agri-environmental landscape indicators to assist policy makers in monitoring the wider impacts of land-based policies. However, capturing the amenity and cultural values that rural agrarian areas provide, by use of such indicators, presents significant challenges. The EU social awareness of landscape indicator represents a new class of generalized social indicator using a top-down methodology to capture the social dimensions of landscape without reference to the specific structural and cultural characteristics of individual landscapes. This paper reviews this indicator in the context of existing agri-environmental indicators and their differing design concepts. Using a stakeholder consultation approach in five case study regions, the potential and limitations of the indicator are evaluated, with a particular focus on its perceived meaning, utility and performance in the context of different user groups and at different geographical scales. This analysis supplements previous EU-wide assessments, through regional scale assessment of the limitations and potentialities of the indicator and the need for further data collection. The evaluation finds that the perceived meaning of the indicator does not vary with scale, but in common with all mapped indicators, the usefulness of the indicator, to different user groups, does change with scale of presentation. This indicator is viewed as most useful when presented at the scale of governance at which end users operate. The relevance of the different sub-components of the indicator are also found to vary across regions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first multi-event study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wavenumber with the most unstable spatial scales mapping to an azimuthal wavelength λ≈1700 − 2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the cross-field current instability and the shear-flow ballooning instability. We conclude that, although the cross-field current instability can generate similar magnitude of growth rates, the range of unstable wavenumbers indicates that the shear-flow ballooning instability is the most likely explanation for our observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.