979 resultados para ARGOS Location-only transmitter KS-202s


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Title from caption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The effects of calcium channel blockers on co-transmission from different populations of autonomic vasomotor neurons were studied on isolated segments of uterine artery and vena cava from guinea-pigs. 2 Sympathetic, noradrenergic contractions of the uterine artery (produced by 200 pulses at 1 or 10 Hz; 600 pulses at 20 Hz) were abolished by the N-type calcium channel blocker omega-conotoxin (CTX) GVIA at 1-10 nM. 3 Biphasic sympathetic contractions of the vena cava (600 pulses at 20 Hz) mediated by noradrenaline and neuropeptide Y were abolished by 10 nM CTX GVIA. 4 Neurogenic relaxations of the uterine artery (200 pulses at 10 Hz) mediated by neuronal nitric oxide and neuropeptides were reduced < 50% by CTX GVIA 10-100 nM. 5 Capsaicin (3 muM) did not affect the CTX GVIA-sensitive or CTX GVIA-resistant neurogenic relaxations of the uterine artery. 6 The novel N-type blocker CTX CVID (100-300 nM), P/Q-type blockers agatoxin IVA (10-100 nM) or CTX CVIB (100 nM), the L-type blocker nifedipine (10 muM) or the 'R-type' blocker SNX-482 (100 nM), all failed to reduce CTX GVIA-resistant relaxations. The T-type channel blocker NiCl2 (100-300 muM) reduced but did not abolish the remaining neurogenic dilations. 7 Release of different neurotransmitters from the same autonomic vasomotor axon depends on similar subtypes of calcium channels. N-type channels are responsible for transmitter release from vasoconstrictor neurons innervating a muscular artery and capacitance vein, but only partly mediate release of nitric oxide and neuropeptides from pelvic vasodilator neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin can modulate the activity of neural reward pathways that are strongly implicated in mediating the effects of chronic alcohol misuse, and its treatment, in human subjects. In previous work and as discussed elsewhere at this meeting, we and others have found consistent differences in the parameters of GABA and glutamate receptors, and the expression of their component subunit transcripts and proteins, in areas of the alcoholic brain that are altered by alcoholism. We did not fi nd clear changes in GABA and glutamate transport function in such samples, but a series of microarray analyses showed consistent upregulation of the presynaptic GABA/betaine transporter SLC6A12. Microarray studies showed no signifi cant differences in the expression of transcripts associated with 5HT transmission; however, only a small number of such elements were present on the arrays. Here we partitioned GABAA and NMDA pharmacology, and subunit mRNA and protein expression, measured in samples of frontal and motor cortex obtained at autopsy from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and controls, according to 5HTTLPR (SLC6A4) and 5HT1B (HTR1B) polymorphisms. We found no effect of these genotypes on the expression of GABAA receptor gene products, but there was a signifi cant mRNA Transcript X Area X Group X 5HTTLPR Interaction with NMDA subunit isoform expression measured by Real Time PCR with GAPDH normalization. Further analysis showed the effect to be selective for alcoholics with cirrhosis, to be most marked in the pathologically vulnerable frontal cortex, and to vary with subunit transcript (F2,76 = 6.545, P = 0.002). NR1 expression was most affected, followed by NR2A, with NR2B expression least altered. Pilot data suggest 5HT1B genotype may also modulate NMDA subunit expression. Interactions between amino acid and serotonin transmission may infl uence susceptibility to alcohol dependence or pathogenesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to investigate the feasibility of detecting and locating damage in large frame structures where visual inspection would be difficult or impossible. This method is based on a vibration technique for non-destructively assessing the integrity of structures by using measurements of changes in the natural frequencies. Such measurements can be made at a single point in the structure. The method requires that initially a comprehensive theoretical vibration analysis of the structure is undertaken and from it predictions are made of changes in dynamic characteristics that will occur if each member of the structure is damaged in turn. The natural frequencies of the undamaged structure are measured, and then routinely remeasured at intervals . If a change in the natural frequencies is detected a statistical method. is used to make the best match between the measured changes in frequency and the family of theoretical predictions. This predicts the most likely damage site. The theoretical analysis was based on the finite element method. Many structures were extensively studied and a computer model was used to simulate the effect of the extent and location of the damage on natural frequencies. Only one such analysis is required for each structure to be investigated. The experimental study was conducted on small structures In the laboratory. Frequency changes were found from inertance measurements on various plane and space frames. The computational requirements of the location analysis are small and a desk-top micro computer was used. Results of this work showed that the method was successful in detecting and locating damage in the test structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own energetic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communication. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints.

The backscatter channel presents a unique set of challenges. Unlike a conventional one-way communication (in which the information source is also the energy source), the backscatter channel experiences strong self-interference and spread Doppler clutter that mask the information-bearing (modulated) signal scattered from the device. Both of these sources of interference arise from the scattering of the transmitted signal off of objects, both stationary and moving, in the environment. Additionally, the measurement of the location of the backscatter device is negatively affected by both the clutter and the modulation of the signal return.

This work proposes a channel coding framework for the backscatter channel consisting of a bi-static transmitter/receiver pair and a quasi-cooperative transponder. It proposes to use run-length limited coding to mitigate the background self-interference and spread-Doppler clutter with only a small decrease in communication rate. The proposed method applies to both binary phase-shift keying (BPSK) and quadrature-amplitude modulation (QAM) scheme and provides an increase in rate by up to a factor of two compared with previous methods.

Additionally, this work analyzes the use of frequency modulation and bi-phase waveform coding for the transmitted (interrogating) waveform for high precision range estimation of the transponder location. Compared to previous methods, optimal lower range sidelobes are achieved. Moreover, since both the transmitted (interrogating) waveform coding and transponder communication coding result in instantaneous phase modulation of the signal, cross-interference between localization and communication tasks exists. Phase discriminating algorithm is proposed to make it possible to separate the waveform coding from the communication coding, upon reception, and achieve localization with increased signal energy by up to 3 dB compared with previous reported results.

The joint communication-localization framework also enables a low-complexity receiver design because the same radio is used both for localization and communication.

Simulations comparing the performance of different codes corroborate the theoretical results and offer possible trade-off between information rate and clutter mitigation as well as a trade-off between choice of waveform-channel coding pairs. Experimental results from a brass-board microwave system in an indoor environment are also presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider how three firms compete in a Salop location model and how cooperation in location choice by two of these firms affects the outcomes. We con- sider the classical case of linear transportation costs as a two-stage game in which the firms select first a location on a unit circle along which consumers are dispersed evenly, followed by the competitive selection of a price. Standard analysis restricts itself to purely competitive selection of location; instead, we focus on the situation in which two firms collectively decide about location, but price their products competitively after the location choice has been effectuated. We show that such partial coordination of location is beneficial to all firms, since it reduces the number of equilibria significantly and, thereby, the resulting coordination problem. Subsequently, we show that the case of quadratic transportation costs changes the main conclusions only marginally.