1000 resultados para AII76-3
Resumo:
The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 × IL7-2 F2 and (IL7-2 × IL7-4) × M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 × IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 × IL7-4) × M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.
Resumo:
In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.
Resumo:
The Internet Engineering Task Force (IETF) is currently developing the next version of the Transport Layer Security (TLS) protocol, version 1.3. The transparency of this standardization process allows comprehensive cryptographic analysis of the protocols prior to adoption, whereas previous TLS versions have been scrutinized in the cryptographic literature only after standardization. This is even more important as there are two related, yet slightly different, candidates in discussion for TLS 1.3, called draft-ietf-tls-tls13-05 and draft-ietf-tls-tls13-dh-based. We give a cryptographic analysis of the primary ephemeral Diffie–Hellman-based handshake protocol, which authenticates parties and establishes encryption keys, of both TLS 1.3 candidates. We show that both candidate handshakes achieve the main goal of providing secure authenticated key exchange according to an augmented multi-stage version of the Bellare–Rogaway model. Such a multi-stage approach is convenient for analyzing the design of the candidates, as they establish multiple session keys during the exchange. An important step in our analysis is to consider compositional security guarantees. We show that, since our multi-stage key exchange security notion is composable with arbitrary symmetric-key protocols, the use of session keys in the record layer protocol is safe. Moreover, since we can view the abbreviated TLS resumption procedure also as a symmetric-key protocol, our compositional analysis allows us to directly conclude security of the combined handshake with session resumption. We include a discussion on several design characteristics of the TLS 1.3 drafts based on the observations in our analysis.
Resumo:
The partial gene sequencing of the matrix (M) protein from seven clinical isolates of bovine parainfluenza virus type 3 (BPIV-3), and the complete sequencing of a representative isolate (Q5592) was completed in this study. Nucleotide sequence analysis was initiated because of the failure of in-house BPIV-3 RT-PCR methods to yield expected products for four of the isolates. Phylogenetic reconstructions based on the nucleotide sequences for the M-protein and the entire genome, using all of the available BPIV-3 nucleotide sequences, demonstrated that there were two distinct BPIV-3 genotypes (BPIV-3a and BPIV-3b). These newly identified genotypes have implications for the development of BPIV-3 molecular detection methods and may also impact on BPIV-3 vaccine formulations.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
Electronic absorption and emission spectra as well as He(I) photoelectron spectra of 2,2,4,4-tetramethyl-,3-cyclobutanedithione and 2,2,4,4-tetramethyl-1-3-thio-1,3-cyclobutanedione have been interpreted on the basis of molecular orbital calculations. The results show that the non-bonded orbital of the dithione is split owing to through-bond interaction, the magnitude of splitting being 0.4 eV. The π* orbital of the dithione appears to be split by about 0.2 eV. Electronic absorption spectra show evidence for the existence of four n—π* transitions, arising out of the splitting of the orbitals referred to above, just as in the case of 2,2,4,4-tetramethyl-1,3-cyclobutanedione. Electronic and photoelectron spectra of the thio-dione show evidence for weak interaction between the C=S and C&.zdbnd;O groups, probably via π* orbitals. Infrared spectra of both the dithione and the thio-dione are consistent with the planar cyclobutane ring; the ring-puckering frequency responsible for non-bonded interactions is around 67 cm−1 in both the dithione and the thio-dione, the value not being very different from that in the dione. The 1,3-transannular distance is also similar in the three molecules.
Resumo:
3-D KCL are equations of evolution of a propagating surface (or a wavefront) Omega(t), in 3-space dimensions and were first derived by Giles, Prasad and Ravindran in 1995 assuming the motion of the surface to be isotropic. Here we discuss various properties of these 3-D KCL.These are the most general equations in conservation form, governing the evolution of Omega(t) with singularities which we call kinks and which are curves across which the normal n to Omega(t) and amplitude won Omega(t) are discontinuous. From KCL we derive a system of six differential equations and show that the KCL system is equivalent to the ray equations of 2, The six independent equations and an energy transport equation (for small amplitude waves in a polytropic gas) involving an amplitude w (which is related to the normal velocity m of Omega(t)) form a completely determined system of seven equations. We have determined eigenvalues of the system by a very novel method and find that the system has two distinct nonzero eigenvalues and five zero eigenvalues and the dimension of the eigenspace associated with the multiple eigenvalue 0 is only 4. For an appropriately defined m, the two nonzero eigenvalues are real when m > 1 and pure imaginary when m < 1. Finally we give some examples of evolution of weakly nonlinear wavefronts.
Resumo:
C18H2204, orthorhombic, P212~21, a = 7.343 (4), b = 11.251 (4), c = 19.357 (4)A, Z = 4, Dr, ' = 1.20, D e = 1.254 g cm -3, F(000) = 648, p(MoKa) = 0.94 cm -~. X-ray intensity data were collected on a Nonius CAD-4 diffractometer and the structure was solved by direct methods. Full-matrix least-squares refinement gave R = 0.052 (R w = 0.045) for 1053 observed reflections. The stereochemical configuration at C(2) has been shown to be 2-exo-methyl-2-endo-(2,6-dimethoxyphenyl), i.e. (3) in contrast to the structure (2) assigned earlier based on its ~H NMR data.
Resumo:
Aims. The beginning point of this research was confusion between studies claiming, that children mature Metalinguistic to read at 6-7 of age, and the fact, that in Montessori playschools children easily start writing and reading at age 3 to 5. Aim was also find out how conception of slow Metalinguistic development has started, and if there is some evidence of phoneme awareness of reading of young children in the field of research of reading. Aim was also seek evidence of the sensitive period of reading as Montessori described it. The research also wanted to turn up, if phoneme awareness only develops in children, who work with graphemes and with reading, or could it be found in children, who do not. The mean was to research how the Montessori reading material supports child’s Metalinguistic development, when child begins learning to read. The research plans to represent knowledge about how young children learn to write and read. Methods. Research performed in ordinary kindergarten and in Montessori playschool in Espoo. In kindergarten observed six children, age 3-4, at eight grapheme-rhyme sessions from January to April 2007, and conducting a test based on Chaney’s (1992) study of phoneme awareness of young children. In Montessori kindergarten were observed 17 children about their phoneme awareness and reading competition from January 2007 to March 2008. Their developments in reading were also measured three times from 1.9.07 to 20.3.08 with classification constructed for this study, loosely based on Chall’s (1983) reading stages. The Montessori reading material was analyzed about the influence they have to a child’s Metalinguistic development. This was done based to theory and its concepts from the field of research of reading; phoneme awareness, morphological, syntactical and semantic consciousness. Results and conclusions. Research proved that children 3-5 have naturally developed phoneme awareness. In kindergarten and in Montessori playschool children between 2 and 4 could do phoneme synthesis, and in the latter they also could do phoneme segmentation of words. Montessori reading material guided children gradually, except to read, also to observe and absorb Metalinguistic knowledge. Children learned to write and read. At the last evaluating day almost 50 % of children write and read clauses or stories, and 82 % could read at least words. Children can develop Metalinguistic awareness, while using the Montessori materials for learning to write and read. To reach literacy is easy for children because of their phoneme awareness.
Resumo:
The promotion of controlled traffic (matching wheel and row spacing) in the Australian sugar industry is necessitating a widening of row spacing beyond the standard 1.5 m. As all cultivars grown in the Australian industry have been selected under the standard row spacing there are concerns that at least some cultivars may not be suitable for wider rows. To address this issue, experiments were established in northern and southern Queensland in which cultivars, with different growth characteristics, recommended for each region, were grown under a range of different row configurations. In the northern Queensland experiment at Gordonvale, cultivars Q187((sic)), Q200((sic)), Q201((sic)), and Q218((sic)) were grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), and 2.3-m dual rows (80 cm between duals). In the southern Queensland experiment at Farnsfield, cvv. Q138, Q205((sic)), Q222((sic)) and Q188((sic)) were also grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), while 1.8-m-wide throat planted single row and 2.0-m dual row (80 cm between duals) configurations were also included. There was no difference in yield between the different row configurations at Farnsfield but there was a significant row configuration x cultivar interaction at Gordonvale due to good yields in 1.8-m single and dual rows with Q201((sic)) and poor yields with Q200((sic)) at the same row spacings. There was no significant difference between the two cultivars in 1.5-m single and 2.3-m dual rows. The experiments once again demonstrated the compensatory capacity that exists in sugarcane to manipulate stalk number and individual stalk weight as a means of producing similar yields across a range of row configurations and planting densities. There was evidence of different growth patterns between cultivars in response to different row configurations (viz. propensity to tiller, susceptibility to lodging, ability to compensate between stalk number and stalk weight), suggesting that there may be genetic differences in response to row configuration. It is argued that there is a need to evaluate potential cultivars under a wider range of row configurations than the standard 1.5-m single rows. Cultivars that perform well in row configurations ranging from 1.8 to 2.0 m are essential if the adverse effects of soil compaction are to be managed through the adoption of controlled traffic.
Resumo:
Over the past decade, The biology of Australian weeds series has presented summary chapters about the biology, taxonomy, significance and control of most of Australia's most problematic weeds. Many of these chapters first appear in Plant Protection Quarterly and are then updated and revised for the book. Dane Panetta was also an editor of the second volume. This volume contains chapters of a further sixteen weed species including several of interest to Queensland.
Resumo:
C13HI3N302, orthorhombic, P2~2121, a = 17.443 (5), b = 11.650 (4), c = 5.784 (1)/~, Z = 4, d m = 1.456, d c = 1.429 Mg m -3, F(000) = 512, g(Cu Ka) = 0.843 mm-L The R index is 0.040 for 1358 significant reflections. The structure is stabilized by C-H...O interactions. The N-methylated eis peptide group which forms part of a six-membered ring is non-planar. The torsion angle about the peptide bond is -6.1 (4) ° and the peptide bond length is 1.337 (3) A.
Resumo:
In the title moleclue, C25H23NO2, the 4-piperidone ring adopts a boat conformation. The molecular conformation is stabilized by an intramolecular C-H center dot center dot center dot O hydrogen bond. In the crystal, molecules are connected through weak intermolecular C-H center dot center dot center dot O hydrogen bonds.