943 resultados para 933


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data have been extracted and compiled from various sources but mainly from the ICES data base. The ICES data are from catch databases downloaded from the ICES website on 2014-01-14. These data are resolved by ICES area, country and year. During inspection of these data, it was noted that Norwegian data for years before 1950 had not been entered into the catch database on the ICES website. ICES has been notified of this omission by B. R. MacKenzie. The Norwegian data from ICES Bulletins. Statistiques has been added. Additional historical bluefin tuna catch data from other fishery reports and sources have been included in the data file for years preceding those when countries started reported their landings officially to ICES. These additional data have been reported in the literature previously (MacKenzie and Myers 2007, Fisheries Research).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial variability of biomass and stable isotopes in plankton size fractions in the upper 200 m was studied in a high spatial resolution transect along 24°N from Canary Islands to Florida (January - March 2011) during Leg 8 of the Malaspina-2010 expedition (http://www.expedicionmalaspina.es) to determine nitrogen and carbon sources. Plankton samples were collected by vertical tows of a microplankton net (40 mm mesh size) and a mesoplankton net (200 mm mesh size) through the upper 200 m of the water column. Sampling was between 10:00 and 16:00 h GMT. Plankton was separated into five size fractions (40 - 200, 200 - 500, 500 - 1000, 1000 - 2000 and > 2000 mm) by gentle filtration of the samples by a graded series of nylon sieves (2000, 1000, 500, 200 and 40 mm). Large gelatinous organisms were removed before filtration. Aliquots for each size fraction were collected on pre-weighed glass-fibre filters, dried (60°C, 48 h) and stored in a desiccator before determination of biomass (dry weight), carbon and nitrogen content and natural abundance of stable carbon and nitrogen isotopes ashore. Vertical advection of waters predominated in lateral zones while the central Atlantic (30-70°W) was characterized by a strong stratification and oligotrophic surface waters. Plankton biomass was low in the central zone and high in both eastern and western sides, with most of the variability due to either large (>2000 µm) and small plankton (<500 µm). Carbon isotopes reflected mainly the advection the deep water in lateral zones. Stable nitrogen isotopes showed a nearly symmetrical spatial distribution in all fractions, with the lowest values (delta15N <1per mill) in the central zone, and were inversely correlated to carbon stable isotopes (delta13C) and to the abundance of the nitrogen-fixer Trichodesmium. Diazotrophy was estimated to account for >50% of organic nitrogen in the central zone, and even >30% in eastern and western zones. The impact of diazotrophy increased with the size of the organisms, supporting the wide participation of all trophic levels in the processing of recently fixed nitrogen. These results indicate that atmospheric sources of carbon and nitrogen prevail over deep water sources in the subtropical North Atlantic and that the zone influenced by diazotrophy is much larger than reported in previous studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined with deficient or excess food. Fecal pellet and egg production were measured as indices for grazing and secondary production, respectively. Furthermore, changes in body carbon, nitrogen, and lipid content were measured. C. glacialis sampled before the bloom and incubated with excess food exhibited high specific egg production at temperatures between 0 and 2.5°C. Higher temperatures did not increase egg production considerably, whereas egg production for C. finmarchicus more than tripled between 2.5 and 5°C. Starved C. glacialis produced eggs at all temperatures stimulated by increasing temperatures, whereas starved C. finmarchicus needed temperatures above 5°C to produce eggs fueled by their lipid stores. Few C. finmarchicus had mature gonads at the initiation of the pre-bloom and bloom experiment, and egg production of C. finmarchicus therefore only increased as the ratio of individuals with mature gonads increased. During the bloom, both C. glacialis and C. finmarchicus used the high food availability for egg production, while refueling or exhausting their lipid stores, respectively. Finally, during the post-bloom experiment, production was low by C. finmarchicus, whereas C. glacialis had terminated production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present a new, pan-North-Atlantic compilation of data on key mesozooplankton species, including the most important copepod, Calanus finmarchicus. Distributional data of eight representative zooplankton taxa, from recent (2000-2009) Continuous Plankton Recorder data, are presented, along with basin-scale data of the phytoplankton colour index. Then we present a compilation of data on C. finmarchicus, including observations of abundance, demography, egg production and female size, with accompanying data on temperature and chlorophyll. . This is a contribution by Canadian, European and US scientists and their institutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.