994 resultados para 7140-335
Resumo:
Ultraviolet and X-ray photoemission spectroscopic (UPS and XPS) studies to characterize the electronic structure of bismuth cuprate superconductor with nominal composition of Bi1.8Pb0.4Sr2Ca2.2Cu3O10 have been carried out. The data clearly shows the metallic emission at the Fermi level (EF). The shoulder (-1.2 eV) near the EF is attributed to the Cu-O derived states. Cu satellite structures observed both in the UPS and XPS show the strongly correlated nature of the Cu 3d electrons. Core level shifts indicate that 3+ and 4+ are the main oxidation of Bi and Pb, respectively. The Pb core lines show two components indicating their inequivalent sites. Core level O 1s spectrum is deconvoluted to show the presence of structurally non-equivalent oxygen sites.
Resumo:
The effect of Raman scattering on co-propagation of two short optical pulses is considered. The intra pulse Raman scattering causes the self-frequency shift of each pulse. The effect of the inter pulse Raman scattering is to enhance the frequency shift while the stimulated Raman scattering (SRS) term suppresses (enhances) the frequency shift if the center frequency difference between the optical pulses falls to the right (left) of the Raman gain peak. An expression for the frequency shift as a function of the propagation distance is obtained.
Resumo:
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.
Resumo:
Due to large scale afforestation programs and forest conservation legislations, India's total forest area seems to have stabilized or even increased. In spite of such efforts, forest fragmentation and degradation continues, with forests being subject to increased pressure due to anthropogenic factors. Such fragmentation and degradation is leading to the forest cover to change from very dense to moderately dense and open forest and 253 km(2) of very dense forest has been converted to moderately dense forest, open forest, scrub and non-forest (during 2005-2007). Similarly, there has been a degradation of 4,120 km(2) of moderately dense forest to open forest, scrub and non-forest resulting in a net loss of 936 km(2) of moderately dense forest. Additionally, 4,335 km(2) of open forest have degraded to scrub and non-forest. Coupled with pressure due to anthropogenic factors, climate change is likely to be an added stress on forests. Forest sector programs and policies are major factors that determine the status of forests and potentially resilience to projected impacts of climate change. An attempt is made to review the forest policies and programs and their implications for the status of forests and for vulnerability of forests to projected climate change. The study concludes that forest conservation and development policies and programs need to be oriented to incorporate climate change impacts, vulnerability and adaptation.
Resumo:
Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.
Resumo:
The impedance of sealed nickel/cadmium cells is measured at low states-of-charge that correspond to a cell e.m.f. range of 0.0 to 1.3 V. The results show that the impedance exhibits a pronounced maximum between 0.3 and 0.45 V. It is concluded that the impedance maxima are due to physicochemical processes taking place at the nickel oxide electrode. The impedance of the nickel oxide electrode is dominated by three different phenomena: (i) a Ni(II)/Ni(III) reaction between 1.3 and 0.8 V; (ii) a double-layer impedance between 0.8 and 0.3 V; (iii) a hydrogen evolution reaction between 0.3 and 0.0 V.
Resumo:
Soluble chromatin was prepared from rat testes after a brief micrococcal nuclease digestion. After adsorption onto hydroxylapatite at low ionic strength, the histone Hl subtypes were eluted with a shallow salt gradient of 0.3 M NaCl to 0.7 M NaCl. Histone Hlt was eluted at 0.4 MNaCl, while histones H1a and Hlc were eluted at 0.43 M NaCl and 0.45 M respectively. The extreme divergence of the amino acid sequence of the C-terminal half of histone Hlt, the major DNA binding domain of histone Hl, from that of the somatic consensus sequence may contribute to the weaker interaction of histone Hlt with the rat testis chromatin. Further, histone Hlt was not phosphorylated in vivo in contrast to histone Hla and Hlc, as is evident from the observation that histone Hlt lacks the SPKK motif recognized by the CDC-2kinase or the RR/KXS motif recognized by protein kinase A.
Resumo:
A differential pressure transducer with sputtered gold films as strain gauges has been designed and fabricated. The construction details of the sensing element assembly are given. The details of the strain gauge film configuration employed and the thin-film deposition process are also presented. Information on the output characteristics of the differential pressure transducer such as effect of pressure cycles on output, thermal stability, bidirectional calibration results obtained and individual gauge stability is reported.
Resumo:
Common water ice (ice I-h) is an unusual solid-the oxygen atoms form a periodic structure but the hydrogen atoms are highly disordered due to there being two inequivalent O-H bond lengths'. Pauling showed that the presence of these two bond lengths leads to a macroscopic degeneracy of possible ground states(2,3), such that the system has finite entropy as the temperature tends towards zero. The dynamics associated with this degeneracy are experimentally inaccessible, however, as ice melts and the hydrogen dynamics cannot be studied independently of oxygen motion(4). An analogous system(5) in which this degeneracy can be studied is a magnet with the pyrochlore structure-termed 'spin ice'-where spin orientation plays a similar role to that of the hydrogen position in ice I-h. Here we present specific-heat data for one such system, Dy2Ti2O7, from which we infer a total spin entropy of 0.67Rln2. This is similar to the value, 0.71Rln2, determined for ice I-h, SO confirming the validity of the correspondence. We also find, through application of a magnetic field, behaviour not accessible in water ice-restoration of much of the ground-state entropy and new transitions involving transverse spin degrees of freedom.
Resumo:
A decapeptide Boc-L-Ala-(DeltaPhe)(4)-L-Ala-(DeltaPhe)(3)-Gly-OMe (Peptide I) was synthesized to study the preferred screw sense of consecutive alpha,beta-dehydrophenylalanine (DeltaPhe) residues. Crystallographic and CD studies suggest that, despite the presence of two L-Ala residues in the sequence, the decapeptide does not have a preferred screw sense. The peptide crystallizes with two conformers per asymmetric unit, one of them a slightly distorted right-handed 3(10)-helix (X) and the other a left-handed 3(10)-helix (Y) with X and Y being antiparallel to each other. An unanticipated and interesting observation is that in the solid state, the two shape-complement molecules self-assemble and interact with an extensive network of C-H...O hydrogen bonds and pi-pi interactions, directed laterally to the helix axis with amazing regularity. Here, we present an atomic resolution picture of the weak interaction mediated mutual recognition of two secondary structural elements and its possible implication in understanding the specific folding of the hydrophobic core of globular proteins and exploitation in future work on de novo design.
Resumo:
We study small perturbations of three linear Delay Differential Equations (DDEs) close to Hopf bifurcation points. In analytical treatments of such equations, many authors recommend a center manifold reduction as a first step. We demonstrate that the method of multiple scales, on simply discarding the infinitely many exponentially decaying components of the complementary solutions obtained at each stage of the approximation, can bypass the explicit center manifold calculation. Analytical approximations obtained for the DDEs studied closely match numerical solutions.
Resumo:
We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers (10(5) < Ra < 10(11)) and at three Prandtl numbers (Pr = 0.7, 5.2, 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (L(p)/A), made dimensionless by the near-wall length scale in turbulent convection (Z(w)), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to L(p)H/A for a given fluid layer of height H. The increase in Pr has a weak influence in decreasing L(p)/A. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.
Resumo:
Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V-max of the enzyme activity by these phospholipids significantly decreased the K-m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K-1/2 = 114 nM) compared to PA (K-1/2 = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.
Resumo:
The Hooghly River estuary provides a unique experimental site to understand the effect of monsoonal river discharge on freshwater and seawater mixing. Water samples collected bi-weekly for a duration of 17 months were analyzed for salinity, delta O-18,delta C-13(DIC), as well as delta D to investigate the differential mixing of freshwater and seawater. The differences in salinity and delta O-18 of samples collected during low and high tides on the same day are strongly correlated suggesting a well mixed water column at our sampling site. Low salinity and depleted delta O-18 during monsoon is consistent with increased river discharge as well as high rainfall. We identified different slopes in a delta O-18 versus salinity plot for the estuary water samples collected during monsoon and non-monsoon seasons. This is driven by composition of the freshwater source which is dominated by rainwater during monsoon and rivers during non-monsoon months. Selected delta D analyses of samples indicate that groundwater contributes significantly to the Hooghly Estuary during low rainfall times of the year. delta C-13(DIC) measured in the water recorded low values towards the end of monsoon indicating low productivity (i.e. increased organic respiration) while progressively increasing delta C-13(DIC) values from October till January as well as during some of the pre-monsoon months can be explained by increasing productivity. Very low delta C-13(DIC) (similar to-20%0) suggests involvement of carbon derived from anaerobic oxidation of organics and/or methane with potential contribution from increased anthropogenic water supply. An estimate of seawater incursion into the Hooghly Estuary at different times of the year is obtained by using salinity data in a two-component mixing model. Presence of seawater was found maximum (31-37%) during February till July and lowest (less than or equal to 6%) from September till November. We notice a temporal offset between Ganges River discharge farther upstream at Farakka and salinity variation at the Hooghly Estuary. We believe that this time lag is a result of the physical distance between Farakka and Kakdweep (our sampling location) and put constraints on the travel time of river water during early monsoon. (c) 2012 Published by Elsevier B.V.
Resumo:
Ferric uptake regulator (Fur) is a transcriptional regulator controlling the expression of genes involved in iron homeostasis and plays an important role in pathogenesis. Fur-regulated sRNAs/CDSs were found to have upstream Fur Binding Sites (FBS). We have constructed a Positional Weight Matrix from 100 known FBS (19 nt) and tracked the `Orphan' FBSs. Possible Fur regulated sRNAs and CDSs were identified by comparing their genomic locations with the `Orphan' FBSs identified. Thirty-eight `novel' and all known Fur regulated sRNAs in nine proteobacteria were identified. In addition, we identified high scoring FBSs in the promoter regions of the 304 CDSs and 68 of them were involved in siderophore biosynthesis, iron-transporters, two-component system, starch/sugar metabolism, sulphur/methane metabolism, etc. The present study shows that the Fur regulator controls the expression of genes involved in diverse metabolic activities and it is not limited to iron metabolism alone. (C) 2012 Elsevier B.V. All rights reserved.