577 resultados para 4c


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New geochemical proxy data from Bermuda Rise piston cores reveal ocean and climate conditions in the northern Sargasso Sea during marine isotope stage 3. Using ?18O on the planktonic foraminifer Globigerinoides ruber, we can correlate explicitly with every stadial/interstadial change in Greenland ice between ~32 and 58 ka. These data suggest repetitive changes of ~4°C in the annual average sea surface temperature (SST), with maximum cooling comparable to or greater than SST during glacial maximum conditions. The extent of SST depression is about the same for typical stadial events and for Heinrich events 4 and 5, which we have identified on the Bermuda Rise by traces of ice rafting. Benthic foraminiferal d13C decreases during every stadial event, consistent with reduced production of the deepest component of North Atlantic Deep Water and shoaling of its interface with Antarctic Bottom Water. This interpretation is supported by benthic Cd/Ca data from the climate cycle associated with interstadial 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of changes in surface ocean conditions, in particular, sea-surface temperature (SST), is essential to understand long-term changes in climate especially in regions where continental climate is strongly influenced by oceanographic processes. To evaluate changes in SST in the northeast Pacific, we have analyzed long-chain alkenones of prymnesiophyte origin at 38 depths in a piston and associated trigger core collected beneath the contemporary core of the California Current System at 42°N, ~270 km off the coast of Oregon/California. The samples span 30,000 years of deposition at this location. Unsaturation patterns (UK'37) in the alkenone series display a statistically significant difference (p <<0.001) between interglacial (0.44 ± 0.02, n = 11) and glacial (0.29 ± 0.04, n = 20) intervals of the cores. Detailed examination of other compositional features of the C37, C38, C39 alkenone series and a related C36 alkenoate series measured downcore suggests the published UK'37 - temperature calibration (UK'37 = 0.034 * T + 0.039 ) , defined for cultures of a strain of Emiliania huxleyi isolated from the subarctic Pacific, provides best estimates of winter SST at our study site. This inference is purely statistical and does not imply, however, that the phytoplankton source of these biomarkers is most productive in winter or at the ocean surface. The temperature record for UK'37 implies (1) an ~4°C shift occurred in winter SST from ~7.5 ± 1.1°C at the last glacial maximum to ~11.7 ± 0.7°C in the present interglacial period, and (2) this warming trend was confined to the time frame 14-10 Ka within the glacial to interglacial transition period. These conclusions are corroborated entirely by results from an independent SST transformation of radiolarian species assemblage data obtained from the same core materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopic data of calcareous nannofossil, monogeneric and monospecific planktic and benthic foraminifera from five Indian Ocean DSDP sites (212, 217, 220, 237, and 253), leads to the following paleoclimatic and paleoceanographic conclusions: - The latest Cretaceous oxygen isotopic record implies a cooling (3-4°C) during the Maastrichtian. At the Cretaceous/Tertiary boundary only a minor warming (about 2°C) has been recorded. The parallel delta13C decrease of more than 1? indicates a significant decrease in productivity. - During the latest Paleocene a positive delta13C excursion was detected in Sites 217 and 237. This transient enrichment in delta13C may be due to productivity changes on continents and/or a change in the storage rate of organic matter in marginal basins or shelf areas. - The most striking feature in the oxygen isotopic record is noted at the Early/Middle Eocene transition. The shift towards more positive values (which were probably enhanced to a certain extent by a preceding diagenetic alteration) delineates a dramatic climatic deterioration at high and mid latitudes during the earlier Tertiary. - Near the Eocene/Oligocene boundary a cooling is evident within the latest Eocene interval. During the earliest Oligocene time a hiatus at Sites 217 and 253 partially obscures the climatic record. - Several climatic fluctuations have been noted during the Oligocene: a cooling at the base of Zone NP 23, a warming at the top of Zone NP 23 through NP 24, and a cooling during Zone NP 25. - The Miocene oxygen isotopic record is dominated by changes in surface and bottom water environments during Zone NN5. The decreasing and then increasing delta18O values, together with the subsequent steepening of the vertical delta18O gradient, point towards major climatic instabilities. These events coincide with the Mid-Miocene build-up of Antarctic ice-sheets. During the latest Miocene to the earliest Pliocene the delta18O record of planktic foraminifera indicates a significant warming of the Indian Ocean at mid-latitudes. - The delta13C record during the Oligocene and Miocene reveals several cycles (delta13C enrichments: NP 24, NN2, NN5, NN9, and base NN 11) which are most likely related to changes in storage rates of organic matter and biological productivity due to climatic changes and transgression/regression cycles. In addition, changes in the circulation patterns may also have influenced the carbon isotopic record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] Planktonic d18O and Mg/Ca-derived sea surface temperature (SST) records from the Agulhas Corridor off South Africa display a progressive increase of SST during glacial periods of the last three climatic cycles. The SST increases of up to 4°C coincide with increased abundance of subtropical planktonic foraminiferal marker species which indicates a progressive warming due to an increased influence of subtropical waters at the core sites. Mg/Ca-derived SST maximizes during glacial maxima and glacial Terminations to values about 2.5°C above full-interglacial SST. The paired planktonic d18O and Mg/Ca-derived SST records yield glacial seawater d18O anomalies of up to 0.8 per mill, indicating measurably higher surface salinities during these periods. The SST pattern along our record is markedly different from a UK'37-derived SST record at a nearby core location in the Agulhas Corridor that displays SST maxima only during glacial Terminations. Possible explanations are lateral alkenone advection by the vigorous regional ocean currents or the development of SST contrasts during glacials in association with seasonal changes of Agulhas water transports and lateral shifts of the Agulhas retroflection. The different SST reconstructions derived from UK'37 and Mg/Ca pose a significant challenge to the interpretation of the proxy records and demonstrate that the reconstruction of the Agulhas Current and interocean salt leakage is not as straightforward as previously suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laser ablation system connected to an inductively coupled plasma mass spectrometer was used to determine Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus. A set of modern core top samples collected along a depth transect on the continental slope off Namibia (320-2300 m water depth; 2.9° to 10.4°C) was used to calibrate the Mg/Ca ratio against bottom water temperature. The resulting Mg/Ca-bottom water temperature relationship of O. umbonatus is described by the exponential equation Mg/Ca = 1.528*e**0.09*BWT. The temperature sensitivity of this equation is similar to previously published calibrations based on Cibicidoides species, suggesting that the Mg/Ca ratio of O. umbonatus is a valuable proxy for thermocline and deep water temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm/a. Derived Sr/Ca-sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol/mol, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca-SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol/mol) = 11.82 (±0.13) - 0.058 (±0.004) * ext (mm/a) - 0.092 (±0.005) * SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca-SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca-SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were >5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca-SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study sites. Samples of surface water were taken from 4 coastal lagoons on the Yucatan Peninsula in Mexico: Celestun (20° 45' N - 90° 22' W), Chelem (21° 15' N - 89° 45' W), Rosada Lagoon (21º 19' N - 89º 19' W), and Sabancuy Estuary (18° 58' N - 91° 12' W). The sampling was performed from august to October of 2011 (Chelem 08/24; Laguna Rosada 09/06; Celestún 09/28; Sabancuy 10/25). The sampling was random without replacement and 10 samples of surface water were collected along a transect parallel to the coastal axis. Samples were deposited in sterile plastic bottles and conserved in refrigeration at 4°C. All samples were processed within 24 hours after sampling. According to the Mexican laws and regulations no permissions are required to obtain water and sediment samples from open public areas. Analysis of environmental and physicochemical parameters. Determinations of the environmental parameters were performed with a Hach 5465000 model 156 multi-parameter measuring instrument. The Lorenzen method was used to determine chlorophyll-a (21) with 90% acetone and the concentration was calculated according to the formula: Chla= 27.63 (OD665o - OD665a)(VA)/VM x L Where, OD665o: absorbance at 665 nm before acidification; OD665a: absorbance at 665 nm after acidification; VA: volume (ml) of acetone for extraction; VM: volume (ml) of filtered water; L: length (cm) of the photometric cell. Determinations of the physicochemical parameters (silicates, phosphates, nitrates, nitrites and ammonia) were performed using the spectrophotometric techniques described and modified by Strickland and Parsons (1972).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical model which describes oxygen isotope exchange during burial and recrystallization of deep-sea carbonate is used to obtain information on how sea surface temperatures have varied in the past by correcting measured d18O values of bulk carbonate for diagenetic overprinting. Comparison of bulk carbonate and planktonic foraminiferal d18O records from ODP site 677A indicates that the oxygen isotopic composition of bulk carbonate does reflect changes in sea surface temperature and d18O. At ODP Site 690, we calculate that diagenetic effects are small, and that both bulk carbonate and planktonic foraminiferal d18O records accurately reflect Paleogene warming of high latitude surface oceans, biased from diagenesis by no more than 1°C. The same is likely to be true for other high latitude sites where sedimentation rates are low. At DSDP sites 516 and 525, the effects of diagenesis are more significant. Measured d18O values of Eocene bulk carbonates are more than 2? lower at deeply buried site 516 than at site 525, consistent with the model prediction that the effects of diagenesis should be proportional to sedimentation rate. Model-corrections reconcile the differences in the data between the two sites; the resulting paleotemperature reconstruction indicates a 4°C cooling of mid-latitude surface oceans since the Eocene. At low latitudes, the contrast in temperature between the ocean surface and bottom makes the carbonate d180 values particularly sensitive to diagenetic effects; most of the observed variations in measured d18O values are accounted for by diagenetic effects rather than by sea surface temperature variations. We show that the data are consistent with constant equatorial sea surface temperatures through most of the Cenozoic, with the possible exception of the early Eocene, when slightly higher temperatures are indicated. We suggest that the lower equatorial sea surface temperatures for the Eocene and Oligocene reported in other oxygen isotope studies are artifacts of diagenetic recrystallization, and that it is impossible to reconstruct accurately equatorial sea surface temperatures without explicitly accounting for diagenetic overprinting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three mid-Holocene sea surface temperature (SST) records spanning more than 30 years were reconstructed for the northern South China Sea using Sr/Ca ratios in Porites corals. The results indicate warmer than present climates between circa 6100 yr B.P. and circa 6500 yr B.P. with the mid-Holocene average minimum monthly winter SSTs, the average maximum monthly summer SSTs, and the average annual SSTs being about 0.5°-1.4°C, 0°-2.0°C, and 0.2°-1.5°C higher, respectively, than they were during 1970-1994. Summer SSTs decrease from circa 6500 yr B.P. to circa 6100 yr B.P. with a minimum centered at circa 6300 yr B.P. The higher average summer SSTs are consistent with a stronger summer monsoon during the mid-Holocene, and the decreasing trend indicates a secular decrease of summer monsoon strength, which reflects the change in summer insolation in the Northern Hemisphere. El Niño-Southern Oscillation (ENSO) cycles were apparent in both the mid-Holocene coral and modern instrumental records. However, the ENSO variability in the mid-Holocene SSTs was weaker than that in the modern record, and the SST record with the highest summer temperatures from circa 6460 yr B.P. to 6496 yr B.P. shows no robust ENSO cycle. This agrees with other studies that indicate that stronger summer monsoon circulation may have been associated with suppressed ENSO variability during the mid-Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 yr). By using a model that is able to explicitly simulate the sensor (d18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean d18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice-sheet. We observe a general pattern toward more enriched values for continental calcite d18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data-model comparison for calcite d18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a trong mean annual cooling between the LGM and present (>6°C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals that large positive calcite d18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive d18Osw anomaly for the north Indian Ocean that contrasts with a large negative d18Osw anomaly in the China Sea between the LGM and present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in d18Osw between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite d18O data. Nonetheless, our data-model comparison support a heterogeneous cooling of few degrees (2-4°C) in the LGM Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples were taken along a transect in the North Atlantic Ocean from 66°139.27'N; 29°136.65'W to 34°124.87'N; 28°128.90'W during the VISION cruise (diVersIty, Structure and functION) MSM03/01 on board the research vessel Maria S. Merian from September 21 to September 30, 2006. Along this transect, each station was sampled at 12 depths, from 10m down to 250m or 500m. Samples were collected with a rosette of 20-l Niskin bottles mounted on a conductivity-temperature-density profiler. Water samples for nutrients analysis were filtered directly after sampling through 0.45-µm in-line filters attached to a 60-ml pre-cleaned syringe into two 12-ml polystyrole tubes. Samples were stored at 4°C (dissolved silicate) or 80°C (ammonium, phosphate, nitrate and nitrite) The samples were spectrophotometrically measured with a continuous-flow analyzer using standard AA3 methods (Seal Analytical, Norderstedt, Germany) using a variant of the method of Grasshoff et al. (1983).