984 resultados para 34 cal ka BP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowing the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM) is crucial for initiating and calibrating numerical ice sheet models that can predict future ice-sheet change and contributions to sea level. However, empirical data are lacking for key areas of outer continental shelves, where the LGM-WAIS must have terminated. We present detailed marine geophysical and geological data documenting an up to ~12 m-thick sequence of glaciomarine sediments within a relict glacial trough in the outer parts of the Amundsen Sea Embayment. Continuous deposition must have persisted here since at least >40 ka BP, pre-dating the established LGM by >13,000 years. Observations constrain the LGM grounding line to a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, a substantial shelf area (~6000 km**2) remained ice free through the last glacial cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals are common along the Moroccan continental margin off Melilla in the Alboran Sea (western Mediterranean Sea), where they colonise and largely cover mound and ridge structures. Radiocarbon ages of the reef-forming coral species Lophelia pertusa and Madrepora oculata sampled from those structures, reveal that they were prolific in this area during the last glacial-interglacial transition with pronounced growth periods covering the Bølling-Allerød interstadial (13.5-12.8 ka BP) and the Early Holocene (11.3-9.8 ka BP). Their proliferation during these periods is expressed in vertical accumulation rates for an individual coral ridge of 266-419 cm ka**-1 that consists of coral fragments embedded in a hemipelagic sediment matrix. Following a period of coral absence, as noted in the records, cold-water corals re-colonised the area during the Mid-Holocene (5.4 ka BP) and underwater photographs indicate that corals currently thrive there. It appears that periods of sustained cold-water coral growth in the Melilla Coral Province were closely linked to phases of high marine productivity. The increased productivity was related to the deglacial formation of the most recent organic rich layer in the western Mediterranean Sea and to the development of modern circulation patterns in the Alboran Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from last glacial to deglacial and subsequently to modern interglacial climate conditions was accompanied by abrupt shifts in the palaeoceanographic setting in the subpolar North Atlantic. Knowledge about the role that sea ice coverage played during these rapid climate reversals is limited since most marine sediment cores from the higher latitudes provide only a coarse temporal resolution and often poorly preserved microfossils. Here we present a highly resolved reconstruction of sea ice conditions that characterised the eastern Fram Strait - a key area for water mass exchange between the Arctic Ocean and the North Atlantic - for the past 30 ka BP. This reconstruction is based on the distribution of the sea ice biomarker IP25 and phytoplankton derived biomarkers in a sediment core from the continental slope of western Svalbard. During the late glacial (30 ka to 19 ka BP), recurrent advances and retreats of sea ice characterised the study area and point to a hitherto less considered oceanic (and/or atmospheric) variability. A long-lasting perennial sea ice coverage in eastern Fram Strait persisted only at the very end of the Last Glacial Maximum (i.e. from 19.2 to 17.6 ka BP) and was abruptly reduced at the onset of Heinrich Event 1 - coincident with or possibly even inducing the collapse of the Atlantic Meridional Overturning Circulation (AMOC). Further maximum sea ice conditions prevailed during the Younger Dryas cooling event and support the assumption of an AMOC reduction due to increased formation and export of Arctic sea ice through Fram Strait. A significant retreat of sea ice and sea surface warming are observed for the Early Holocene.