941 resultados para 290601 Chemical Engineering Design
Resumo:
Modern PWM inverter output voltage has high dv/dt, which causes problems such as voltage doubling that can lead to insulation failure, ground currents that results in electromagnetic interference concerns. The IGBT switching device used in such inverter are becoming faster, exacerbating these problems. This paper proposes a new procedure for designing the LC clamp filter. The filter increases the rise time of the output voltage of inverter, resulting in smaller dv/dt. In addition suitable selection of resonance frequency gives LCL filter configuration with improved attenuation. By adding this filter at output terminal of inverter which uses long cable, voltage doubling effect is reduced at the motor terminal. The design procedure is carried out in terms of the power converter based per unit scheme. This generalizes the design procedure to a wide range of power level and to study optimum designs. The effectiveness of the design is verified by computer simulation and experimental measurements.
Resumo:
In engineering design, the end goal is the creation of an artifact, product, system, or process that fulfills some functional requirements at some desired level of performance. As such, knowledge of functionality is essential in a wide variety of tasks in engineering activities, including modeling, generation, modification, visualization, explanation, evaluation, diagnosis, and repair of these artifacts and processes. A formal representation of functionality is essential for supporting any of these activities on computers. The goal of Parts 1 and 2 of this Special Issue is to bring together the state of knowledge of representing functionality in engineering applications from both the engineering and the artificial intelligence (AI) research communities.
Resumo:
The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. The first method is the slip line method proposed by earlier researchers. The second method is based on slope stability analysis proposed by this author earlier and the new method proposed is based on the finite element analyses. In the first method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method, generalpurpose slope stability program was used to design the geocell mattress of required strength for embankment using a composite model to represent the shear strength of geocell layer. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example.
Resumo:
Control of sound transmission through the structure and reflection from the structure immersed in fluid media impose highly conflicting requirements on the design of the carpeted noise control linings. These requirements become even more stringent if the structure is expected to be moving with considerable speed particularly under intense hydrostatic pressure. Numerous configurations are possible for designing these linings. Therefore, in this paper, a few lining configurations are identified from the literature for parametric study so that the designer is provided with an environment to analyze and design the lining. A scheme of finite element analysis is used to analyze these linings for their acoustic performance. Commercial finite element software, NISA®, is used as a platform to develop a customized environment wherein design parameters of different configurations can be varied with consistency checks and generate the finite element meshes using the 8-noded hexahedral element. Four types of designs proposed and analysed here address the parameters of interest such as the echo reduction and the transmission loss. Study of the effect of different surface distributions of the cavities is carried out. Effect of static pressure on different designs is reported.
Resumo:
In this paper, we present the design and development details of a micro air vehicle (MAV) built around a quadrotor configuration. A survey of implemented MAVs suggests that a quadrotor design has several advantages over other configurations, especially in the context of swarm intelligence applications. Our design approach consists of three stages. However, the focus of this paper is restricted to the first stage that involves selection of crucial components such as motor-rotor pair, battery source, and structural material. The application of MAVs are broad-ranging, from reconnaissance to search and rescue, and have immense potential in the rapidly advancing field of swarm intelligence.