708 resultados para 20m sprint
Resumo:
The copepod Ingestion on ciliates, phytoplankton and the copepod production dataset is based on samples taken during April 2008 in Dardanelles Straits, Marmara Sea and Bosporus Straits at the third priority stations. These experiments were set up according to DoW of Sesame project. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 50 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Centropages typicus and Acartia clausi according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs/female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Centropages typicus and Acartia clausi. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mg/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).
Resumo:
The first data set contains the mean and cofficient of variation (standard deviation divided by mean) of a multi-frequency indicator I derived from ER60 acoustic information collected at five frequencies (18, 38, 70, 120, and 200 kHz) in the Bay of Biscay in May of the years 2006, 2008, 2009 and 2010 (Pelgas surveys). The multi-frequency indicator was first calculated per voxel (20 m long × 5 m deep sampling unit) and then averaged on a spatial grid (approx. 20 nm × 20 nm) for five 5-m depth layers in the surface waters (10-15m, 15-20m, 20-25m, 25-30m below sea surface); there are missing values in particular in the shallowest layer. The second data set provides for each grid cell and depth layer the proportion of voxels for which the multi-frequency indicator I was indicative of a certain group of organisms. For this the following interpretation was used: I < 0.39 swim bladder fish or large gas bubbles, I = 0.39-0.58 small resonant bubbles present in gas bearing organisms such as larval fish and phytoplankton, I = 0.7-0.8 fluidlike zooplankton such as copepods and euphausiids, and I > 0.8 mackerel. These proportions can be interpreted as a relative abundance index for each of the four organism groups.