993 resultados para 165-1002B
Resumo:
A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.
Resumo:
Crystal size measurements have been carried out on tephra fall layers of Miocene to recent age from Sites 998, 999, and 1000 in the western Caribbean Sea. Maximum crystal size is used as a proxy for the grain size characteristics of the layers and an index of atmospheric dispersal from source eruptions. Crystal sizes range from 50 to 650 µm with the majority falling between 200 and 300 µm. All three sites exhibit a coarsening in the grain size of tephra layers with increasing age to the early Miocene that broadly correlates with an increase in the frequency of layers. Analysis of the present lower and upper level atmospheric circulation in the western Caribbean suggests that the layers were derived from source eruptions to the west of the sites somewhere in the Central American region. Minimum distances to these sources are of the order of 700 km. Crystal sizes in tephra layers at these distances are consistent with their derivation from energetic pyroclastic flow-forming eruptions that injected tephra to stratospheric levels by large-scale co-ignimbrite and plinian-style plumes. Coarsening of the layers during the Miocene peak of explosive volcanism cannot be attributed to any major change in paleowind intensity and is taken to represent the occurrence of more energetic eruptions that were able to disperse tephra over larger areas.
Resumo:
Temperature reconstructions indicate that the Pliocene was ~3 °C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 2.8 to 3.3 million years ago from ODP Site 999. Our record is of high enough resolution (~19 Kyrs) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature, which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.