634 resultados para 13200-091
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 µM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment-water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment-water interface and the annual DSi efflux was close to 0.057 mol Si/m**2/yr. Biogenic silica accumulation was close to 0.008 mol Si/m**2/yr and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si/m**2/yr. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si/m**2/yr). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.
Resumo:
The present data set is a worldwide compilation from 11 oceanographic expeditions during which an underwater vision profiler (UVP) was deployed in situ to determine the vertical distribution (abundance) of 10 taxonomic/morphological groups of plankton larger than 600 µm, belonging to the Infrakingdom Rhizaria, including Phaeodaria, Radiolaria, Collodaria and Acantharia.
Resumo:
The present data set provides environmental context to a worldwide compilation from 11 oceanographic expeditions during which an underwater vision profiler (UVP) was deployed in situ to determine the vertical distribution plankton larger than 600 µm, belonging to the Infrakingdom Rhizaria.