960 resultados para 1117


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modal filtering is based on the capability of single-mode waveguides to transmit only one complex amplitude function to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible in a nulling interferometer. In the present paper we focus on the progress of Integrated Optics in the thermal infrared [6-20 mu m] range, one of the two candidate technologies for the fabrication of Modal Filters, together with fiber optics. In conclusion of the European Space Agency's (ESA) "Integrated Optics for Darwin" activity, etched layers of clialcogenide material deposited on chalcogenide glass substrates was selected among four candidates as the technology with the best potential to simultaneously meet the filtering efficiency, absolute and spectral transmission, and beam coupling requirements. ESA's new "Integrated Optics" activity started at mid-2007 with the purpose of improving the technology until compliant prototypes can be manufactured and validated, expectedly by the end of 2009. The present paper aims at introducing the project and the components requirements and functions. The selected materials and preliminary designs, as well as the experimental validation logic and test benches are presented. More details are provided on the progress of the main technology: vacuum deposition in the co-evaporation mode and subsequent etching of chalcogenide layers. In addition., preliminary investigations of an alternative technology based on burying a chalcogenide optical fiber core into a chalcogenide substrate are presented. Specific developments of anti-reflective solutions designed for the mitigation of Fresnel losses at the input and output surface of the components are also introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides an introduction to Wireless Sensor Networks (WSN), their applications in the field of control engineering and elsewhere and gives pointers to future research needs. WSN are collections of stand-alone devices which, typically, have one or more sensors (e.g. temperature, light level), some limited processing capability and a wireless interface allowing communication with a base station. As they are usually battery powered, the biggest challenge is to achieve the necessary monitoring whilst using the least amount of power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health risks associated with the inhalation or ingestion of cadmium are well documented([1,2]). During the past 18 years, EU legislation has steadily been introduced to restrict its use, leaving a requirement for the development of replacement materials. This paper looks at possible alternatives to various cadmium II-VI dielectric compounds used in the deposition of optical thin-films for various opto-electronic devices. Application areas of particular interest are for infrared multilayer interference filter fabrication and solar cell industries, where cadmium-based coatings currently find widespread use. The results of single and multilayer designs comprising CdTe, CdS, CdSe and PbTe deposited onto group IV and II-VI materials as interference filters for the mid-IR region are presented. Thin films of SnN, SnO2, SnS and SnSe are fabricated by plasma assisted CVD, reactive RF sputtering and thermal evaporation. Examination of these films using FTIR spectroscopy, SEM, EDX analysis and optical characterisation methods provide details of material dispersion, absorption, composition, refractive index, energy band gap and layer thicknesses. The optimisation of deposition parameters in order to synthesise coatings with similar optical and semiconductor properties as those containing cadmium has been investigated. Results of environmental, durability and stability trials are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce transreal analysis as a generalisation of real analysis. We find that the generalisation of the real exponential and logarithmic functions is well defined for all transreal numbers. Hence, we derive well defined values of all transreal powers of all non-negative transreal numbers. In particular, we find a well defined value for zero to the power of zero. We also note that the computation of products via the transreal logarithm is identical to the transreal product, as expected. We then generalise all of the common, real, trigonometric functions to transreal functions and show that transreal (sin x)/x is well defined everywhere. This raises the possibility that transreal analysis is total, in other words, that every function and every limit is everywhere well defined. If so, transreal analysis should be an adequate mathematical basis for analysing the perspex machine - a theoretical, super-Turing machine that operates on a total geometry. We go on to dispel all of the standard counter "proofs" that purport to show that division by zero is impossible. This is done simply by carrying the proof through in transreal arithmetic or transreal analysis. We find that either the supposed counter proof has no content or else that it supports the contention that division by zero is possible. The supposed counter proofs rely on extending the standard systems in arbitrary and inconsistent ways and then showing, tautologously, that the chosen extensions are not consistent. This shows only that the chosen extensions are inconsistent and does not bear on the question of whether division by zero is logically possible. By contrast, transreal arithmetic is total and consistent so it defeats any possible "straw man" argument. Finally, we show how to arrange that a function has finite or else unmeasurable (nullity) values, but no infinite values. This arithmetical arrangement might prove useful in mathematical physics because it outlaws naked singularities in all equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains{-8,-1,0,1,8,&pphi;} as a proper subset. We note that the axioms have been shown to be consistent by machine proof.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a unique two-stage image restoration framework especially for further application of a novel rectangular poor-pixels detector, which, with properties of miniature size, light weight and low power consumption, has great value in the micro vision system. To meet the demand of fast processing, only a few measured images shifted up to subpixel level are needed to join the fusion operation, fewer than those required in traditional approaches. By maximum likelihood estimation with a least squares method, a preliminary restored image is linearly interpolated. After noise removal via Canny operator based level set evolution, the final high-quality restored image is achieved. Experimental results demonstrate effectiveness of the proposed framework. It is a sensible step towards subsequent image understanding and object identification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A synthesis method is outlined for the design of broadband anti-reflection coatings for use in spaceborne infrared optics. The Golden Section optimisation routine is used to make a search, using designated non-absorptive dielectric thin film combinations, for the coating design which fulfils the required spectral requirements using the least number of layers and different materials. Three examples are given of coatings designed by this method : (I) 1µm to 12µm anti-reflection coating on Zinc Sulphide using Zinc Sulphide and Yttrium Fluoride thin film materials. (ii) 2µm to 14µm anti-reflection coating on Germanium using Germanium and Ytterbium Fluoride thin film materials. (iii) 6µm to 17µm anti-reflection coating on Germanium using Lead Telluride, Zinc Selenide and Barium Fluoride. The measured spectral performance of the manufactured 6µm to 17µm coating on Germanium is given. This is the anti-reflection coating for the germanium optics in the NASA Cassini Orbiter CIRS instrument.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress is reported in the development of a new synthesis method for the design of filters and coatings for use in spaceborne infrared optics. This method uses the Golden Section optimization routine to make a search, using designated dielectric thin film combinations, for the coating design which fulfills the required spectral requirements. The final design is that which uses the least number of layers for the given thin film materials in the starting design. This synthesis method has successfully been used to design broadband anti-reflection coatings on infrared substrates. The 6 micrometers to 18 micrometers anti-reflection coating for the germanium optics of the HIRDLS instrument, to be flown on the NASA EOS-Chem satellite, is given as an example. By correctly defining the target function to describe any specific type of filter in the optimization part of the method, this synthesis method may be used to design general filters for use in spaceborne infrared optics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared filters and coatings have been employed on many sensing radiometer instruments to measure the thermal emission profiles and concentrations of certian chemical constituents found in planetary atmospheres. The High Resolution Dynamics Limb Sounder ( HIRDLS) is an example of the most recent developments in limb-viewing radiometry by employing a cooled focal plane detector array to provide simultaneous multi-channel monitoring of emission from gas and aerosols over an altitude range between 8 - 70 km. The use of spectrally selective cooled detectors in focal plane arrays has simplified the optical layout of radiometers, greatly reducing the number of components in the optical train. this has inevitably led to increased demands for the enviromnetal durability of the focal plane filters because of the need to cut sub-millimeter sizes, whilst maintaining an optimal spectral performance. Additionally the remaining refractive optical elements require antireflection coatings which must cover the entire spectral range of the focal plane array channels, in this case 6 to 18µm, with a minimum of reflection and absorption. This paper describes the optical layout and spectral design requirements for filteriong in the HIRDLS instrument, and reports progress on the manufacturing and testing of the sub-millimetre sized cooled filters. We also report on the spectral and environmental performance of prototype wideband antireflection coatings which satisfy the requirements above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The High Resolution Dynamics Limb Sounder is described, with particular reference to the atmospheric measurements to be made and the rationale behind the measurement strategy. The demands this strategy places on the filters to be used in the instrument and the designs to which this leads to are described. A second set of filters at an intermediate image plane to reduce "Ghost Imaging" is discussed together with their required spectral properties. A method of combining the spectral characteristics of the primary and secondary filters in each channel are combined together with the spectral response of the detectors and other optical elements to obtain the system spectral response weighted appropriately for the Planck function and atmospheric limb absorption. This method is used to demonstrate whether the out-of-band spectral blocking requirement for a channel is being met and an example calculation is demonstrated showing how the blocking is built up for a representative channel. Finally, the techniques used to produce filters of the necessary sub-millimetre sizes together with the testing methods and procedures used to assess the environmental durability and establish space flight quality are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the design and manufacture of the filters and antireflection coatings used in the HIRDLS instrument. The multilayer design of the filters and coatings, choice of layer materials, and the deposition techniques adopted to ensure adequate layer thickness control is discussed. The spectral assessment of the filters and coatings is carried out using a FTIR spectrometer; some measurement results are presented together with discussion of measurement accuracy and the identification and avoidance of measurement artifacts. The post-deposition processing of the filters by sawing to size, writing of an identification code onto the coatings and the environmental testing of the finished filters are also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With continually increasing demands for improvements to atmospheric and planetary remote-sensing instrumentation, for both high optical system performance and extended operational lifetimes, an investigation to access the effects of prolonged exposure of the space environment to a series of infrared interference filters and optical materials was promoted on the NASA LDEF mission. The NASA Long Duration Exposure Facility (LDEF) was launchd by the Space Shuttle to transport various science and technology experiments both to and from space, providing investigators with the opportunity to study the effects of the space environment on materials and systems used in space-flight applications. Preliminary results to be discussed consist of transmission measurements obtained and processed from an infrared spectrophotometer both before (1983) and after (1990) exposure compared with unexposed control specimens, together with results of detailed microscopic and general visual examinations performed on the experiment. The principle lead telluride (PbTe) and Zinc Sulphide (ZnS) based multilayer filters selected for this preliminary investigation consist of : an 8-12µm low pass edge filter, a 10.6µm 2.5% half bandwidth (HBW) double half-wave narrow bandpass filter, and a 10% HBW triple half-wave wide bandpass filter at 15µm. Optical substrates of MgF2 and KRS-5 (T1BrI) will also be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

System aspects of filter radiometer optics used to sense planetary atmospheres are described. Thus the lenses, dichroic beamsplitters and filters in longwave channels of the Mars Observer PMIRR Pressure Modulator Infrared radiometer instrument are assessed individually, and as systems at 20.7µm, 31.9µm, 47.2µm wavelength. A window filter and a longwave calibration filter of the SCARAB earth observer instrument are assessed similarly.