985 resultados para 100 m water depth
Resumo:
Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.
Resumo:
Total concentrations of algal pigments, organic C, C, N, P and S were determined in surface sediments from the littoral zone of 21 lakes in ice-free areas of northern Victoria Land (Antarctica) with different climatic and environmental conditions. Concentrations of major ions and nutrients were also determined in water samples from the same lakes. The latter samples had extremely variable chemical compositions; however, all the lakes resulted oligotrophic. Pigment concentrations in surface sediments were comparable to those reported for other Antarctic lakes and lower than those in oligotrophic lakes at lower latitudes. Cyanophyta, Chlorophyta and Bacillariophyta were the main taxa identified. These taxa correspond to those reported in previous microscopy-based studies on Antarctic phytoplankton and phytobenthos. Discriminant Function Analysis and Canonical Correspondence Analysis of data indicate that the distribution of pigments in these Victoria Land lakes depends mainly on their geographical location (particularly the distance from the sea) and nutrient status.
Resumo:
Data are presented on concentration of dissolved organic carbon and particulate organic nitrogen in sea water at four stations, and also of dissolved and particulate amino acids at a deep-sea station above the Japan Trench. Concentration of Corg ranged from 0.79 to 2.00 mg/l, reaching maximum in the upper productive layers, while that of particulate Norg varied from 0.0018 to 0.037 mg/l, the maximum being in the upper layer (0-100 m). Water and particulate matter contained 18 amino acids in concentrations varying from 0.150 to 0.177 mg/l in the former and from 0.010 to 0.048 mg/l in the latter. Amino acid composition is variable. Vertical distribution of dissolved Corg and particulate Norg, as well as of dissolved and particulate amino acids is greatly dependent on water dynamics.
Resumo:
The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.
Resumo:
The datasets present measurements of cDOM absorption in lakes, rivers and streams of Yamal and Gydan Peninsula area during the summer periods from 2012-2014 and 2016. In summer seasons of 2012 - 2013 water samples was collected during "Yamal-Arctic" Expedition. All of the research areas were located near the coastline of Yamal, Yavay, and Gydan Peninsula and Bely Island. In 2012 water samples from rivers, lakes and streams were taken near New Port, Cape Kamenny and Tambey settlements and in basins (water catchments) of the Sabetta, Seyakha, Yuribey (Baydaratskaya Bay, Gydan Peninsula) and Mongocheyakha rivers. In 2013 water samples from rivers, lakes and streams were taken in the Yavai Peninsula, Yayne Vong bay and in the basins (water catchments) of the Sabetta, Mongocheyakha and Yuribey (Gydan Peninsula) rivers. In 2014 lakes were sampled in the Erkuta River basin, south of Yamal Peninsula. In 2016 lakes and rivers were sampled it the Erkuta River basin and Polar Ural area. cDOM is operationally defined by the chosen filter pore size. Samples have been consistently filtrated through 0.7 µm pore size glas fibre filters. cDOM filtrates have been stored in darkness and have been measured after the expedition using the dual-beam Specord200 laboratory spectrometer (Jena Analytik) at the Otto Schmidt Laboratory OSL, Arctic and Antarctic Research Institute, St. Petersburg, Russia. The OSL cDOM protocol (Heim and Roessler, 2016) prescribes 3 Absorbance (A) measurements per sample from UV to 750 nm against ultra-pure water. The absorption coefficient, a, is calculated by a = 2.303A/L, where L is the pathlength of the cuvette [m], and the factor 2.303 converts log10 to loge. The output of the calculation is a continuous spectrum of a. The cDOM a spectra are used to determine the exponential slope value for specific wavelength ranges, S by fitting the data between min and max wavelength to an exponential function. We provide cDOM absorption coefficients for the wavelengths 254, 260, 350, 375, 400, 412, 440, 443 nm [1/m] and Slope values for three different UV, VIS, wavelength ranges: 275 to 295 nm, 350 to 400 nm, 300 to 500 nm [1/m]. All data were carried out by scientists from Arctic and Antarctic Research Institute and Saint Petersburg State University of Russia during "Yamal-Arctic" expeditions in 2012-2013, RFBR project No 14-04-10065 in 2014, No 14-05-00787 in 2016.
Resumo:
The book summarizes data on distribution and composition of sedimentary material suspended in waters of the Atlantic Ocean and its seas. Results of observations of Soviet and foreign expeditions are given. Distribution of suspended matter in sections across the ocean, as well as in the most studied seas are shown. New data on grain size, mineral and chemical composition of suspended matter are published. Summary of history of investigation of bottom sediments from the Atlantic Ocean from the first scientific cruises to the present is done. A brief description of sediment types in the ocean and a detailed description of Mediterranean Sea sediments are given.
Resumo:
Whether intrinsic molecular properties or extrinsic factors such as environmental conditions control the decomposition of natural organic matter across soil, marine and freshwater systems has been subject to debate. Comprehensive evaluations of the controls that molecular structure exerts on organic matter's persistence in the environment have been precluded by organic matter's extreme complexity. Here we examine dissolved organic matter from 109 Swedish lakes using ultrahigh-resolution mass spectrometry and optical spectroscopy to investigate the constraints on its persistence in the environment. We find that degradation processes preferentially remove oxidized, aromatic compounds, whereas reduced, aliphatic and N-containing compounds are either resistant to degradation or tightly cycled and thus persist in aquatic systems. The patterns we observe for individual molecules are consistent with our measurements of emergent bulk characteristics of organic matter at wide geographic and temporal scales, as reflected by optical properties. We conclude that intrinsic molecular properties are an important control of overall organic matter reactivity.
Resumo:
Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80 % of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.