963 resultados para 1-Phosphatidylinositol 3-Kinase
Resumo:
Es ist bekannt, dass die Überexpression eines einzigen Onkogens im Tumorgewebe einen maligneren Phänotyp zur Folge haben kann. Ein Beispiel hierfür ist die Rezeptortyrosinkinase HER-2. Besonders in Mamma- und Ovarialkarzinomen tritt häufig eine HER-2 Überexpression auf, die mit einer schlechteren Prognose für die Patientinnen einhergeht. Die HER-2 blockierende Therapie mit Trastuzumab (Herceptin®) konnte zu einer signifikanten Verbesserung der Überlebenszeit bei Patientinnen mit metastasierendem Mammakarzinom führen. Es ist deshalb von großem Interesse herauszufinden, ob ein Tumor durch gezielte Blockade eines bestimmten Onkogens sein tumorigenes Potential verlieren kann, und dadurch das Tumorwachstum zumindest zeitweise unterbunden wird. Die Frage ist also, ob ein Tumor reversibel sein kann, wenn die Expression seiner Onkogene blockiert wird. Frühere Arbeiten meiner Arbeitsgruppe haben gezeigt, dass Tumore, die konditional humanes HER-2 exprimierten, nach Ausschalten von HER-2 tatsächlich in Remission gingen, d.h. reversibel waren. Tumorgrößenabhängig konnte sogar eine vollständige Tumorremission beobachtet werden. Die vorliegende Arbeit soll nun helfen, die beobachtete Remission nach Ausschalten von HER-2 besser verstehen zu können. Von Interesse sind dabei vor allem die molekularen Mechanismen, die in dem Tumor nach Ausschalten der HER-2 Expression ablaufen. Die konditionale Expression von HER-2 wurde mit Hilfe des TET-OFF Systems in NIH3T3 Mausfibroblasten erreicht. Mit dieser Technik wurde ein Maustumormodell etabliert, das ermöglichte, die Veränderungen in den Tumoren nach Ausschalten von HER-2 zu untersuchen. Ein besonderes Augenmerk wurde dabei auf zwei der durch HER-2 vermittelten Signalwege gerichtet, den Ras-MAP Kinase Signalweg und die Aktivierung von Akt über die Phosphoinositol-3 Kinase. Beide wurden nach Ausschalten der HER-2 Expression deaktiviert. Um herausfinden zu können, welcher der beiden Wege eine wichtigere Rolle bei der Tumorremission spielt, wurden in der vorliegenden Arbeit zwei weitere Maustumormodelle zur konditionalen Expression von humanem H-Ras bzw. einer Form des humanen c-Raf-1 (BXB-Raf1) etabliert. Die Modelle funktionierten auf dieselbe Weise wie das HER-2 Maustumormodell und es wurden auch dieselben Faktoren untersucht. Ras und Raf sind Mitglieder des Ras-MAP Kinase Signalweges. Raf ist aber im Gegensatz zu HER-2 und Ras nicht in der Lage, Akt zu aktivieren. Durch Vergleich der Ergebnisse der drei Maustumormodelle war es deshalb möglich zu differenzieren, ob Einflüsse auf die Tumorentwicklung über denn Ras-MAP Kinase oder den PI3K/Akt Signalweg vermittelt wurden. Auch Ausschalten von H-Ras oder BXB-Raf1 führte zu einer raschen Tumorremission. Damit wurde erneut die Frage nach der Reversibilität eines Tumors beantwortet. Ob die Remission auf einer Induktion von Apoptose beruhte, konnte nicht endgültig geklärt werden, da es zwar nach Ausschalten von HER-2 zu einer Erhöhung der Apoptoserate kam, nicht jedoch nach Ausschalten von H-Ras oder BXB-Raf1. Aufgrund der vorhandenen Ergebnisse wird vermutet, dass es zu einer Störung des Gleichgewichtes zwischen proliferationsfördernden und apoptotischen Faktoren nach Ausschalten der Onkogene kam. Die in den Tumoren vorhandene Spontanapoptose könnte dann ausreichen, den Prozess der Tumorremission auszulösen. Die Untersuchungen haben gezeigt, dass ERK bzw. der Ras-MAP Kinase Signalweg die bedeutendere Rolle bei der Tumorremission spielte. Zum einen wurde dies belegt durch die Beobachtung, dass die Tumorverläufe von HER-2 und BXB-Raf1 nahezu identisch waren. Zum anderen kam es in allen drei Modellen zu einer Dephosphorylierung von ERK, die der Tumorremission vorausging. Akt schien dagegen keine Rolle zu spielen, da das Ausschalten der HER-2, H-Ras oder BXB-Raf1 Expression zu keiner einheitlichen Veränderung des Posphorylierungsgrades von Akt führte. Demnach ist die Blockade des Ras-MAP Kinase Signalweges, der hauptsächlich proliferationsfördernde Eigenschaften besitzt, wichtiger für die Tumorremission als die Blockade des PI3K/Akt Signalweges, der hauptsächlich anti-apoptotische Eigenschaften vermittelt.
Resumo:
Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.
Resumo:
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFalpha), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, beta-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFalpha concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement.
Resumo:
Time-of-flight (ToF) and phase contrast (PC) magnetic resonance angiographies (MRAs) are noninvasive applications to depict the cerebral arteries. Both approaches can image the cerebral vasculature without the administration of intravenous contrast. Therefore, it is used in routine clinical evaluation of cerebrovascular diseases, e.g., aneurysm and arteriovenous malformations. However, subtle microvascular disease usually cannot be resolved with standard, clinical-field-strength MRA. The purpose of this study was to compare the ability of ToF and PC MRA to visualize the cerebral arteries at increasing field strengths.
Resumo:
Insulin receptors are widely distributed in the kidney and affect multiple aspects of renal function. In the proximal tubule, insulin regulates volume and acid-base regulation through stimulation of the Na(+)/H(+) exchanger NHE3. This paper characterizes the signaling pathway by which insulin stimulates NHE3 in a cell culture model [opossum kidney (OK) cell]. Insulin has two distinct phases of action on NHE3. Chronic insulin (24 h) activates NHE3 through the classic phosphatidylinositol 3-kinase-serum- and glucocorticoid-dependent kinase 1 (PI3K-SGK1) pathway as insulin stimulates SGK1 phosphorylation and the insulin effect can be blocked by the PI3K inhibitor wortmannin or a dominant-negative SGK1. We showed that SGK1 transcript and protein are expressed in rat proximal tubule and OK cells. We previously showed that glucocorticoids augment the effect of insulin on NHE3 (Klisic J, Hu MC, Nief V, Reyes L, Fuster D, Moe OW, Ambuhl PM. Am J Physiol Renal Physiol 283: F532-F539, 2002). Part of this can be mediated via induction of SGK1 by glucocorticoids, and indeed the insulin effect on NHE3 can also be amplified by overexpression of SGK1. We next addressed the acute effect of insulin (1-2 h) on NHE3 by systematically examining the candidate signaling cascades and activation mechanisms of NHE3. We ruled out the PI3K-SGK1-Akt and TC10 pathways, increased surface NHE3, NHE3 phosphorylation, NHE3 association with calcineurin homologous protein 1 or megalin as mechanisms of acute activation of NHE3 by insulin. In summary, insulin stimulates NHE3 acutely via yet undefined pathways and mechanisms. The chronic effect of insulin is mediated by the classic PI3K-SGK1 route.
Resumo:
Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2 catalyze the interconversion of inactive and active glucocorticoids. Impaired regulation of these enzymes has been associated with obesity, diabetes, hypertension, and cardiovascular disease. Previous studies in animals and humans suggested that dehydroepiandrosterone (DHEA) has antiglucocorticoid effects, but the underlying mechanisms are unknown. In this study, DHEA treatment markedly increased mRNA expression and activity of 11beta-HSD2 in a rat cortical collecting duct cell line and in kidneys of C57BL/6J mice and Sprague-Dawley rats. DHEA-treated rats tended to have reduced urinary corticosterone to 11-dehydrocorticosterone ratios. It was found that CCAAT/enhancer-binding protein-alpha (C/EBP-alpha) and C/EBP-beta regulated HSD11B2 transcription and that DHEA likely modulated the transcription of 11beta-HSD2 in a phosphatidylinositol-3 kinase/Akt-dependent manner by increasing C/EBP-beta mRNA and protein expression. Moreover, it is shown that C/EBP-alpha and C/EBP-beta differentially regulate the expression of 11beta-HSD1 and 11beta-HSD2. In conclusion, DHEA induces a shift from 11beta-HSD1 to 11beta-HSD2 expression, increasing conversion from active to inactive glucocorticoids. This provides a possible explanation for the antiglucocorticoid effects of DHEA.
Resumo:
The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.
Resumo:
Serine residues of the human insulin receptor (HIR) may be phosphorylated and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIR delta JM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIR delta JM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the overexpressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.
Resumo:
In this issue...First aid, Anaconda Copper Mining Company, Butte Y.M.C.A., School of Mines gymnasium, Oratory contest, Glee Club
Resumo:
In this issue...M-Day, Convocation, Student Council, Copper Guards, Gary Mitton, Clark Park, Butte Rotary Club, Tom Davis Memorial, blood donations