939 resultados para 1 Alpha-hydroxylase


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study we compared the effects produced by moxonidine (alpha(2)-adrenoceptor/imidazoline agonist) injected into the 4th cerebral ventricle and into the lateral cerebral ventricle on mean arterial pressure, heart rate and on renal, mesenteric and hindquarter vascular resistances, as well as the possible action of moxonidine on central alpha(1)- or alpha(2)-adrenoceptors to produce cardiovascular responses. Male Holtzman rats (n = 7-8) anesthetized with urethane (0.5 g/kg, intravenously - i.v.) and alpha-chloralose (60 mg/kg, i.v.) were used. Moxonidine (5, 10 and 20 nmol) injected into the 4th ventricle reduced arterial pressure (-19 +/- 5, -30 +/- 7 and -43 +/- 8 mmHg vs. vehicle: 2 +/- 4 mmHg), heart rate (-10 +/- 6, - 16 +/- 7 and -27 +/- 9 beats per minute - bpm, vs. vehicle: 4 +/- 5 bpm), and renal, mesenteric and hindquarter vascular resistances. Moxonidine (5, 10 and 20 nmol) into the lateral ventricle only reduced renal vascular resistance (-77 +/- 17%, - 85 +/- 13%, -89 +/- 10% vs. vehicle: 3 +/- 4%), without changes on arterial pressure, heart rate and mesenteric and hindquarter vascular resistances. Pre-treatment with the selective alpha(2)-adrenoceptor antagonist yohimbine (80, 160 and 320 nmol) injected into the 4th ventricle attenuated the hypotension (-32 +/- 5, -25 +/- 4 and -12 +/- 6 mmHg), bradycardia (-26 +/- 11, -23 +/- 5 and -11 +/- 6 bpm) and the reduction in renal, mesenteric and hindquarter vascular resistances produced by moxonidine (20 nmol) into the 4th ventricle. Pretreatment with yohimbine (320 nmol) into the lateral ventricle did not change the renal vasodilation produced by moxonidine (20 nmol) into the lateral ventricle. The alpha(1)-adrenoceptor antagonist prazosin (320 nmol) injected into the 4th ventricle did not affect the cardiovascular effects of moxonidine. However, prazosin (80, 160 and 320 nmol) into the lateral ventricle abolished the renal vasodilation (-17 +/- 4, -6 +/- 9 and 2 +/- 11%) produced by moxonidine. The results indicate that the decrease in renal vascular resistance due to moxonidine action in the forebrain is mediated by alpha(1)-adrenoceptors, while the cardiovascular effects produced by moxonidine acting in the brainstern depend at least partially on the activation of coadrenoceptors. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expression of alpha(1)-adrenoceptor subtypes in several tissues is regulated by gonadal hormones. In this study, we investigated whether castration regulates the alpha(1)-adrenoceptor subtypes mediating the contractions of the aorta from male rats to noradrenaline. Noradrenaline induced similar concentration-dependent contractions in the aorta from control and castrated rats. Treatment of the aorta from both control and castrated rats with the alpha(1B)/alpha(1D)-adrenoceptor alkylating agent chloroethylclonidine resulted in approximate to1600-fold rightward shift in the concentration-response curves to noradrenaline. The pA(2) values found for WB 4101, benoxathian (alpha(1A)-selective) and BMY 7378 (alpha(1D)-selective) indicate that alpha(1D)-adrenoceptors are involved in the contractions of the aorta from control and castrated rats to noradrenaline. However, there was a 15-fold difference between the pK(B) estimated through the lowest effective concentrations of the alpha(1A)-adrenoceptor selective antagonist 5-methyl-urapidil in the aorta from control and castrated rats. The pK(B) estimated in aorta from control rats is consistent with the interaction with alpha(1D)-adrenoceptors (7.58 +/- 0.06), while that calculated in organs from control rats is consistent with alpha(1A)-adrenoceptors (8.76 +/- 0.09). These results suggest that castration induces plasticity in the alpha(1)-adrenoceptor subtypes involved in the contractions of the aorta to noradrenaline. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of castration on alpha(1)-adrenoceptors in rat vas deferens were investigated by determining the actions of selective antagonists against the contractions induced by noradrenaline. The results obtained in vas deferens from control rats suggest participation of alpha(1A)-adrenoceptors as judged by the pA(2) values for prazosin (9.6), benoxathian (9.5), 2(2,6-dimethoxyphenoxyethyl) amino-methyl-1,4-benzodioxone hydrochloride) (WB 4101) (9.6), phentolamine (8.4), 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dionedihydrochloride (BMY 7378) (6.7) and by the insensitivity to chloroethylclonidine (100 mu M, 45 min). In vas deferens from castrated rats, WE 4101 and spiperone showed slopes lower than 1.0 in the Schild plots, suggesting participation of multiple receptors. In these organs, noradrenaline contractions were partially inhibited by chloroethylclonidine (100 mu M, 45 min), indicating participation of alpha(1B)-adrenoceptors. After chloroethylclonidine treatment, WE 4101 showed a slope not different from 1.0 in the Schild plot, resulting in a pA(2) of 9.4, which indicates an interaction with alpha(1A)-adrenoceptors. It is suggested that castration modifies the functional alpha(1)-adrenoceptors subtypes in rat vas deferens. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The contractions of the rat vas deferens in response to noradrenaline are mediated through alpha(1A)-adrenoceptors. We observed participation of alpha(1B)-adrenoceptors in these contractions after castration. We now investigated the time course of this plasticity and the effects of testosterone by determining the actions of competitive antagonists on noradrenaline-induced contractions after 7, 14, 21 and 30 days of castration. BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride) antagonised noradrenaline-induced contractions in control and castrated rats with low pA(2) values (congruent to 6.8). In control vas deferens, WB 4101 (2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride) had a slope in the Schild plot no different from 1.0, while slopes lower than 1.0 ( approximate to 0.6) were observed for vas deferens from castrated rats. Chloroethylclonidine was ineffective in the control vas while it inhibited noradrenaline-induced contractions in vasa from castrated rats and converted the complex antagonism by WB 4101 into simple competitive antagonism. Treatment of castrated rats with testosterone prevented the effects of castration. The results suggest that alpha(1B)-adrenoceptors are detectable in vas deferens from at least the 7th through the 30th day after castration and that testosterone prevents this plasticity. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated whether or not surgical denervation of the rat vas deferens changes the alpha(1)-adrenoceptor subtypes involved in the contractions to noradrenaline. Denervated vas deferens was approximate to22 times more sensitive to noradrenaline (pD(2)=7.35 +/- 0.04) than control vas (pD(2)= 6.01 +/- 0.03). This difference in noradrenaline potency was eliminated when cocaine (6 muM) was added to control vas (pD(2)=7.22 +/- 0.04). The noradrenaline-induced contractions of control and denervated vas deferens were insensitive to the alpha(1B)/alpha(1D)-adrenoceptor alkylating agent chloroethylclonidine (100 muM, 45 min). The concentration-response curves to noradrenaline in control and denervated vas deferens were competitively antagonised by prazosin (pA(2)approximate to9.6), WB-4101 (pA(2)approximate to9.5), 5-methyl urapidil (pA(2)approximate to8.4), phentolamine (pA(2)approximate to8.7), yohimbine (pA(2)approximate to6.9), BMY 7378 (pA(2)approximate to6.9) and indoramin (pA(2)approximate to8.7). After the treatment of control and denervated vas deferens with phenoxybenzamine, the partial agonist oxymetazoline antagonised competitively the concentration-response curves to noradrenaline showing pA(2) values approximate to7.4 in both groups. We conclude that noradrenaline-induced contractions in control and denervated rat vas deferens are mediated by alpha(1A)-adrenoceptors and that surgical denervation of the rat vas deferens is not able to change the alpha(1)-adrenoceptor subtypes involved in the contractions to noradrenaline.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1 the actions of the alpha(1)-adrenoceptor antagonist indoramin have been examined against the contractions induced by noradrenaline in the rat vas deferens and aorta taking into account a putative neuronal uptake blocking activity of this antagonist which could. result in self-cancelling actions.2 Indoramin behaved as a simple competitive antagonist of the contractions induced by noradrenaline in the vas deferens and aorta yielding pA(2) values of 7.38 +/- 0.05 (slope = 0.98 +/- 0.03) and 6.78 +/- 0.14 (slope = 1.08 +/- 0.06), respectively.3 When the experiments were repeated in the presence of cocaine (6 mu M) the potency (pA(2)) of indoramin in antagonizing the contractions of the vas deferens to noradrenaline was increased to 8.72 +/- 0.07 (slope = 1.10 +/- 0.05) while its potency remained unchanged in the aorta (pA(2) = 6.69 +/- 0.12; slope = 1.04 +/- 0.05).4 In denervated vas deferens, indoramin antagonized the contractions to noradrenaline with a potency similar to that found in the presence of cocaine (8.79 +/- 0.07; slope = 1.09 +/- 0.06).5 It is suggested that indoramin blocks alpha(1)-adrenoceptors and neuronal uptake in rat vas deferens resulting in Schild plots with slopes not different from unity even in the absence of selective inhibition of neuronal uptake. As a major consequence of this double mechanism of action, the pA(2) values for this antagonist are underestimated when calculated in situations where the neuronal uptake is active, yielding spurious pK(B) values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective was to estimate alterations in adrenergic receptor sites of guinea pig vas deferens, in vivo and in vitro, induced by chronic denervation. The denervation process induced an increased sensitivity (3-fold at the EC50 level) without alteration in the maximum response to phenylephrine in vitro. The sensitivity alteration was characterized by the decrease in the dissociation constant of phenylephrine for alpha-adrenoceptor [K-A: normal tissue 3.50 (0.75-16.21) x 10(-5) and denervated tissue 0.43 (0.11-1.67) x 10(-5) M, p < 0.05] without changing the dissociation constant of prazosin. A decrease in pD(2)' value for phenylephrine-phenoxybenzamine, probably due to a qualitative rather than a quantitative alteration in the alpha-adrenoceptor, was also shown in vitro [pD(2)': normal tissue (8.2776 +/- 0.0402) and denervated tissue (8.0051 +/- 0.0442), p < 0.05]. No change in sensitivity and maximum response to phenylephrine was observed in vivo after denervation, although an increased resistance of vas deferens to phenoxybenzamine blockade has been evidenced in this condition. (C) 1999 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3- fold more sensitive to methoxamine and phenylephrine (n = 6 - 12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA). Interestingly, the imidazolines N-[ 5-( 4,5- dihydro- 1H- imidazol-2-yl)-2-hydroxy-5,6,7,8- tetrahydronaphthalen- 1- yl] methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)- ARs, were equipotent in PRTA and DRTA (n = 4 - 12), whereas buspirone, which activates selectively alpha(1D)-AR, was approximate to 70-fold more potent in PRTA than in DRTA (n = 8; p < 0.05). The selective alpha(1D)-AR antagonist 8-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-8-azaspiro[4.5] decane-7,9-dione dihydrochloride (BMY- 7378) was approximate to 70- fold more potent against the contractions induced by phenylephrine in PRTA (pK(B) of approximate to 8.45; n = 6) than in DRTA (pK B of approximate to 6.58; n = 6), although the antagonism was complex in PRTA. 5-Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)-ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities. antagonism was complex in PRTA. 5- Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)- ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of the conotoxin p-TIA, a 19-amino acid peptide isolated from the marine snail Conus tulipa, to antagonize contractions induced by noradrenaline through activation of alpha(1A)-adrenoceptors in rat vas deferens, alpha(1B)-adrenoceptors in rat spleen and alpha(ID)-adrenoceptors in rat aorta, and to inhibit the binding of [I-125]HEAT (2-[[beta-(4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone) to membranes of human embryonic kidney (HEK) 293 cells expressing each of the recombinant rat alpha(1)-adrenoceptors was investigated. p-TIA (100 nM to 1 muM) antagonized the contractions of vas deferens and aorta in response to noradrenaline without affecting maximal effects and with similar potencies (pA(2)similar to7.2, n=4). This suggests that p-TIA is a competitive antagonist of alpha(1A)- and alpha(1D)-adrenoceptors with no selectivity between these subtypes. Incubation of p-TIA (30 to 300 nM) with rat spleen caused a significant reduction of the maximal response to noradrenaline, suggesting that p-TIA is a non-competitive antagonist at alpha(1B)-adrenoceptors. After receptor inactivation with phenoxybenzamine, the potency of p-TIA in inhibiting contractions was examined with similar occupancies (similar to25%) at each subtype. Its potency (pIC(50)) was 12 times higher in spleen (8.3 +/- 0.1, n=4) than in vas deferens (7.2 +/- 0.1, n=4) or aorta (7.2 0.1, n=4). In radioligand binding assays, p-TIA decreased the number of binding sites (B,,,,,,) in membranes from HEK293 cells expressing the rat alpha(1B)-adrenoceptors without affecting affinity (K-D), In contrast, in HEK293 cells expressing rat alpha(1A)- or alpha(1D)-adrenoceptors, p-TTA decreased the KD without affecting the B-max. It is concluded that p-TIA will be useful for distinguishing the role of particular alpha(1)-adrenoceptor subtypes in native tissues. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1 beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p < 0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1 induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1 beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts. (c) 2005 Elsevier B.V./International Society of Matrix Biology. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peginterferon-alpha plus ribavirin is the most effective therapy for chronic hepatitis C. This study was designed to evaluate the effect of peginterferon alpha-2a (40 kDa) plus ribavirin on sustained virological response (SVR) when administered for 24 vs 48 weeks in genotype 1 naive patients. One hundred and seventeen patients were enrolled in this controlled trial. Genotype 1 patients were randomized to 24 weeks treatment vs 48 weeks treatment. Genotype non-1 patients received 24 weeks treatment as an observational group. Outcomes were SVR (defined by hepatitis C virus-RNA-negative at week 24 of follow-up) and tolerability across the study period. The end-of-treatment response was 59% for genotype 1 (24 weeks treatment), 80% for genotype 1 (48 weeks treatment) and 92% for genotype non-1 (24 weeks treatment). The end-of-follow-up response was 19% (95% confidence interval (CI): 7.2-36.4) (genotype 1, 24 weeks) and 48% (95% CI: 30.2-66.9; P = 0.0175) (genotype 1, 48 weeks). Among genotype non-1, SVR was 76% (95% CI: 62.3-86.5). There were no unexpected adverse events.Almost half of the genotype 1 patients achieved an SVR after 48 weeks treatment with peginterferon alpha-2a (40 kDa) and low-dose ribavirin and confirmed that they should be treated for 48 weeks. Safety profile was acceptable.