893 resultados para wavelet transforms
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Proceedings of the International Conference on Computational Intelligence in Medicine Healthcare, CIMED 2005, Costa da Caparica, June 29 - July 1, 2005
Resumo:
Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Ao longo dos últimos anos, acompanhada da evolução tecnológica, da dificuldade da inspeção visual e da consciencialização dos efeitos de uma má inspeção, verificou-se uma maior sensibilidade para a importância da monitorização estrutural, principalmente nas grandes infra-estruturas de engenharia civil. Os sistemas de monitorização estrutural permitem o acompanhamento contínuo do comportamento de uma determinada estrutura de tal forma que com os dados obtidos, é possível avaliar alterações no comportamento da mesma. Com isso, tem-se desenvolvido e implementado estratégias de identificação de danos estruturais com o intuito de aumentar a fiabilidade estrutural e evitar precocemente que alterações na condição da estrutura possam evoluir para situações mais severas. Neste contexto, a primeira parte desta dissertação consiste numa introdução à monitorização estrutural e à deteção de dano estrutural. Relativamente à monitorização, são expostos os seus objetivos e os princípios da sua aplicação. Conjuntamente são apresentados e descritos os principais sensores e são explicadas as funcionalidades de um sistema de aquisição de dados. O segundo tema aborda a importância da deteção de dano introduzindo os métodos estudados neste trabalho. Destaca-se o método das linhas de influência, o método da curvatura dos modos de vibração e o método da transformada de wavelet. Na segunda parte desta dissertação são apresentados dois casos de estudo. O primeiro estudo apresenta uma componente numérica e uma componente experimental. Estuda-se um modelo de viga que se encontra submetida a vários cenários de dano e valida-se a capacidade do método das linhas de influência em detetar e localizar essas anomalias. O segundo estudo consiste na modelação numérica de uma ponte real, na posterior simulação de cenários de dano e na análise comparativa da eficácia de cada um dos três métodos de deteção de dano na identificação e localização dos danos simulados. Por último, são apresentadas as principais conclusões deste trabalho e são sugeridos alguns tópicos a explorar na elaboração de trabalhos futuros.
Resumo:
In a highly competitive market companies know that having quality products or provide good services is not enough to keep customers "faithful". Currently, quality of products/services, location and price are fundamental aspects customers expect to get on every purchase, so they look for ways to distinguish companies. This can happen either in a strictly materialistic way or by evaluation of intangible metrics such as having his opinion appreciated or being part of a selected group of "premium" customers. Therefore, companies must find ways to value and reward its customers in order to keep them "faithful" to their products or services. Loyalty systems are one means to achieve this goal, however, due to its nature and how they are implemented, often companies end up having low acceptance, without achieving intended objectives. In an era of technological revolution, where global average adoption of smartphones and tablets is 74% and 40% [Our Mobile Planet, 2014], the opportunity to reinvent loyalty systems reappears. Throughout this thesis a new tool, relying on the latest technologies and aiming to fulfill this market opportunity, will be presented. The main idea is to use ancient loyalty concepts, such as stamps or pointscards, and transforms them into digital cards, to be used in digital wallets, introducing an innovative technology component based on Apple's Passbook technology. The main goal is to create a platform for managing the card’s life cycle, allowing anyone to create, edit, distribute and analyze the data, and also create a new communication channel with customers, improving the customer-‐supplier relationship and enhancing the mobile-‐marketing.
Resumo:
A constante evolução da tecnologia permitiu ao ser humano a utilização de dispositivos electrónicos nas suas rotinas diárias. Estas podem ser afetadas quando os utilizadores sofrem de deficiências ou doenças que afetam as suas capacidades motoras. Com o intuito de minimizar este obstáculo surgiram as Interfaces Homem-Computador (HCI). É neste panorama que os sistemas HCI baseados em Eletroculografia (EOG) assumem um papel preponderante na melhoria da qualidade de vida destes indivíduos. A Eletroculografia é o resultado da aquisição do movimento ocular, que pode ser adquirido através de diversos métodos. Os métodos mais convencionais utilizam elétrodos de superfície para aquisição dos sinais elétricos, ou então, utilizam sistemas de gravação de vídeo, que gravam o movimento ocular. O objetivo desta tese é desenvolver um sistema HCI baseado em Eletroculografia, que adquire o sinal elétrico do movimento ocular através de elétrodos de superfície. Para tal desenvolveu-se um circuito eletrónico para a aquisição do sinal de EOG, bem como um algoritmo em Python para análise do mesmo. O circuito foi desenvolvido recorrendo a seis módulos diferentes, cada um deles com uma função específica. Para cada módulo foi necessário desenhar e implementar placas de circuito impresso, que quando conectadas entre si permitem filtrar, amplificar e digitalizar os sinais elétricos, adquiridos através de elétrodos de superfície, originados pelo movimento ocular. O algoritmo criado em Python permite analisar os dados provenientes do circuito e converte-os para coordenadas. Através destas foi possível determinar o sentido e a amplitude do movimento ocular.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Dissertação para obtencão do Grau de Mestre em Engenharia Civil - Perfil Estruturas
Resumo:
Every year forest fires consume large areas, being a major concern in many countries like Australia, United States and Mediterranean Basin European Countries (e.g., Portugal, Spain, Italy and Greece). Understanding patterns of such events, in terms of size and spatiotemporal distributions, may help to take measures beforehand in view of possible hazards and decide strategies of fire prevention, detection and suppression. Traditional statistical tools have been used to study forest fires. Nevertheless, those tools might not be able to capture the main features of fires complex dynamics and to model fire behaviour [1]. Forest fires size-frequency distributions unveil long range correlations and long memory characteristics, which are typical of fractional order systems [2]. Those complex correlations are characterized by self-similarity and absence of characteristic length-scale, meaning that forest fires exhibit power-law (PL) behaviour. Forest fires have also been proved to exhibit time-clustering phenomena, with timescales of the order of few days [3]. In this paper, we study forest fires in the perspective of dynamical systems and fractional calculus (FC). Public domain forest fires catalogues, containing data of events occurred in Portugal, in the period 1980 up to 2011, are considered. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses. The frequency spectra of such signals are determined using Fourier transforms, and approximated through PL trendlines. The PL parameters are then used to unveil the fractional-order dynamics characteristics of the data. To complement the analysis, correlation indices are used to compare and find possible relationships among the data. It is shown that the used approach can be useful to expose hidden patterns not captured by traditional tools.
Resumo:
The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The vision of the Internet of Things (IoT) includes large and dense deployment of interconnected smart sensing and monitoring devices. This vast deployment necessitates collection and processing of large volume of measurement data. However, collecting all the measured data from individual devices on such a scale may be impractical and time consuming. Moreover, processing these measurements requires complex algorithms to extract useful information. Thus, it becomes imperative to devise distributed information processing mechanisms that identify application-specific features in a timely manner and with a low overhead. In this article, we present a feature extraction mechanism for dense networks that takes advantage of dominance-based medium access control (MAC) protocols to (i) efficiently obtain global extrema of the sensed quantities, (ii) extract local extrema, and (iii) detect the boundaries of events, by using simple transforms that nodes employ on their local data. We extend our results for a large dense network with multiple broadcast domains (MBD). We discuss and compare two approaches for addressing the challenges with MBD and we show through extensive evaluations that our proposed distributed MBD approach is fast and efficient at retrieving the most valuable measurements, independent of the number sensor nodes in the network.
Resumo:
RESUMO: Os biomarcadores tumorais permitem identificar os doentes com maior risco de recorrência da doença, predizer a resposta tumoral à terapêutica e, finalmente, definir candidatos a novos alvos terapêuticos. Novos biomarcadores são especialmente necessários na abordagem clínica dos linfomas. Actualmente, esses tumores são diagnosticados através de uma combinação de características morfológicas, fenotípicas e moleculares, mas o prognóstico e o planeamento terapêutico estão quase exclusivamente dependentes de características clínicas. Estes factores clínicos são, na maioria dos linfomas, insuficientes numa proporção significativa dos doentes, em particular, aqueles com pior prognóstico. O linfoma folicular (LF) é, globalmente, o segundo subtipo mais comum de linfoma. É tipicamente uma doença indolente com uma sobrevida média entre os 8 e 12 anos, mas é geralmente fatal quando se transforma num linfoma agressivo de alto grau, habitualmente o linfoma difuso de grandes células B (LDGCB). Morfologicamente e funcionalmente, as células do LF recapitulam as células normais do centro germinativo na sua dependência de sobrevivência do microambiente não-tumoral, especialmente das células do sistema imunológico. Biomarcadores preditivos de transformação não existem pelo que um melhor conhecimento da biologia intrínseca de progressão do LF poderá revelar novos candidatos. Nesta tese descrevo duas abordagens distintas para a descoberta de novos biomarcadores. A primeira, o estudo da expressão global de genes ('genomics') obtidos por técnicas de alto rendimento que analisam todo o genoma humano sequenciado, permitindo identificar novas anomalias genéticas que possam representar mecanismos biológicos importantes de transformação. São descritos novos genes e alterações genómicas associados à transformação do LF, sendo especialmente relevantes as relacionadas com os eventos iniciais de transformação em LDGCB. A segunda, baseou-se em várias hipóteses centradas no microambiente do LF, rico em vários tipos de células nãomalignas. Os estudos imunoarquitectural de macrófagos, células T regulatórias e densidade de microvasos efectuado em biopsias de diagnóstico de doentes com LF tratados uniformemente correlacionaram-se significativamente, e independentemente dos critérios clínicos, com a evolução clínica e, mais importante, com o risco de transformação em LDGCB. Nesta tese, foram preferencialmente utilizadas (e optimizadas) técnicas que permitam o uso de amostras fixadas em parafina e formalina (FFPET). Estas são facilmente acessíveis a partir das biopsias de diagnóstico de rotina presentes nos arquivos de todos os departamentos de patologia, facilitando uma transição rápida dos novos marcadores para a prática clínica. Embora o FL fosse o tema principal da tese, os novos achados permitiram estender facilmente hipóteses semelhantes a outros subtipos de linfoma. Assim, são propostos e validados vários biomarcadores promissores e relacionados com o microambiente não tumoral, sobretudo dependentes das células do sistema imunológico, como contribuintes importantes para a biologia dos linfomas. Estes sugerem novas opções para a abordagem clínica destas doenças e, eventualmente, novos alvos terapêuticos.------------- ABSTRACT: Cancer biomarkers provide an opportunity to identify those patients most at risk for disease recurrence, predict which tumours will respond to different therapeutic approaches and ultimately define candidate biomarkers that may serve as targets for personalized therapy. New biomarkers are especially needed in the management of lymphoid cancers. At present, these tumours are diagnosed using a combination of morphologic, phenotypic and molecular features but prognosis and overall survival are mostly dependent on clinical characteristics. In most lymphoma types, these imprecisely assess a significant proportion of patients, in particular, those with very poor outcomes. Follicular lymphoma (FL) is the second most common lymphoma subtype worldwide. It is typically an indolent disease with current median survivals in the range of 8-12 years, but is usually fatal when it transforms into an aggressive high-grade lymphoma, characteristically Diffuse Large B Cell Lymphoma (DLBCL). Morphologically and functionally it recapitulates the normal cells of the germinal center with its survival dependency on non-malignant immune and immunerelated cells. Informative markers of transformation related to the intrinsic biology of FL progression are needed. Within this thesis two separate approaches to biomarker discovery were employed. The first was to study the global expression of genes (‘genomics’) obtained using high-throughput, wholegenome-wide approaches that offered the possibility for discovery of new genetic abnormalities that might represent the important biological mechanisms of transformation. Gene signatures associated with early events of transformation were found. Another approach relied on hypothesis-driven concepts focusing upon the microenvironment, rich in several non-malignant cell types. The immunoarchitectural studies of macrophages, regulatory T cells and microvessel density on diagnostic biopsies of uniformly treated FL patients significantly predicted clinical outcome and, importantly, also informed on the risk of transformation. Techniques that enabled the use of routine formalin fixed paraffin embedded diagnostic specimens from the pathology department archives were preferentially used in this thesis with the goal of fulfilling a rapid bench-to-beside” translation for these new findings. Although FL was the main subject of the thesis the new findings and hypotheses allowed easy transition into other lymphoma types. Several promising biomarkers were proposed and validated including the implication of several non-neoplastic immune cells as important contributors to lymphoma biology, opening new options for better treatment planning and eventually new therapeutic targets and candidate therapeutics.