873 resultados para visual surveillance system
Resumo:
This thesis considers the visual electrophysiological effects of vigabatrin (an anti-epileptic drug, which acts by increasing the levels of the inhibitory neurotransmitter GABA on the retina of the eye compared to the concentric visual field defects which have been found associated with the drug. Flash and pattern ERG's, EOG's multifocal ERG's (VERIS), flash and pattern VEP's and visual fields were tested. Although VEP's have been shown not to be affected by vigabatrin, these were recorded to complete the testing. Initially, of the eight vigabatrin patients with known visual field defects, 7 showed abnormally delayed 30Hz flicker a-wave latencies, 5 abnormally delayed 30Hz b-wave latencies and 6 abnormally low 30Hz amplitudes. Also 7 showed an abnormally prolonged latency of oscillatory potential 1 (OP1). The two patients taking vigabatrin at the time of testing showed low EOG Arden index values. The VERIS results correlated well with the severity of the visual field defects. Following this finding, eleven healthy subjects received vigabatrin over a 10-day period. No changes were seen in the visual fields, however, the photopic ERG b-wave latency significantly increased (although not to abnormal values). A matched pairs study with eleven vigabatrin, patients and eleven epileptic patients, who had never taken vigabatrin supported the findings of abnormal 30Hz flicker b-wave and OP latencies associated with vigabatrin, again with the VERIS results correlating to the severity of the visual field defect. The abnormal 30Hz flicker and VERIS responses indicate involvement of the cone photoreceptors and the OP's show an effect on the amacrine cells. The ERG increase in the photopic b-wave latency also suggests involvement of the bipolar cells, however, this effect and the reversible effect on the Arden index after cessation of the drug may be unrelated to the visual field defect. To conclude this thesis, a field specific VEP stimulus was developed to assess the retinal function in the peripheral field of paediatric patients. It comprises of a dartboard stimulus with a central 0-5 degree black and white chequered stimulus, a blank 5-30 degree annulus and a 30-60 degree peripheral chequered stimulus. When optimised on four vigabatrin patients it was found that no peripheral response can be evoked with a field loss exceeding 30-35 degrees. Co-operation was found to be successful in children as young as four years old.
Resumo:
This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.
Resumo:
In an endeavour to provide further insight into the maturation of the human visual system, the contiguous development of the pattern reversal VEP, flash VEP and flash ERG was studied in a group of neurologically normal pre-term infants, born between 28 and 35 weeks gestation. Maturational changes were observed in all the evoked electrophysiological responses recorded, these were mainly characterised by an increase in the complexity of the waveform and a shortening in the latency of the response. Initially the ERG was seen to consist of a broad b-wave only, with the a-wave emerging at an average age of 40 weeks PMA. The a-wave showed only a slight reduction in latency and a modest increase in amplitude as the infant grows older, whereas the changes seen in the ERG b-wave were much more dramatic. Pattern reversal VEPs were successfully recorded for the first time during the pre-term period. Flash VEPs were also recorded for comparison. The neonatal pattern reversal VEP consistently showed a major positive component (P1) of long latency. As the infant grew older, the latency of the P1 component decreased and was found to be negatively correlated with PMA at recording. The appearance of the N1 and N2 components became more frequent as the infant matured. The majority of infants were found to be myopic at birth and refractive error was correlated with PMA, with emmetropisation occurring at about 45 weeks PMA. The pattern reversal VEP in response to 2o checks was apparently unaffected by refractive error.
Resumo:
Multiple system atrophy (MSA) is a rare movement disorder and a member of a group of neurodegenerative diseases, which include Parkinson’s disease (PD) and progressive supranuclear palsy (PSP), and referred to as the ‘parkinsonian syndromes’. Although primarily a neurological disorder, patients with MSA may also develop visual signs and symptoms that could be useful in differential diagnosis. In addition, the eye-care practitioner may contribute to the management of visual problems of MSA patients and therefore, help to improve quality of life. This second article in the series considers the visual signs and symptoms of MSA with special reference to those features most useful in differential diagnosis of the parkinsonian syndromes.
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
Resumo:
Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.
Resumo:
This study investigated the effects of augmented prenatal auditory stimulation on postnatal visual responsivity and neural organization in bobwhite quail (Colinus virginianus). I delivered conspecific embryonic vocalizations before, during, or after the development of a multisensory, midbrain audiovisual area, the optic tectum. Postnatal simultaneous choice tests revealed that hatchlings receiving augmented auditory stimulation during optic tectum development as embryos failed to show species-typical visual preferences for a conspecific maternal hen 72 hours after hatching. Auditory simultaneous choice tests showed no hatchlings had deficits in auditory function in any of the groups, indicating deficits were specific to visual function. ZENK protein expression confirmed differences in the amount of neural plasticity in multiple neuroanatomical regions of birds receiving stimulation during optic tecturn development, compared to unmanipulated birds. The results of these experiments support the notion that the timing of augmented prenatal auditory stimulation relative to optic tectum development can impact postnatal perceptual organization in an enduring way.^
Resumo:
It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.
Resumo:
Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.
Resumo:
The police use both subjective (i.e. police staff) and automated (e.g. face recognition systems) methods for the completion of visual tasks (e.g person identification). Image quality for police tasks has been defined as the image usefulness, or image suitability of the visual material to satisfy a visual task. It is not necessarily affected by any artefact that may affect the visual image quality (i.e. decrease fidelity), as long as these artefacts do not affect the relevant useful information for the task. The capture of useful information will be affected by the unconstrained conditions commonly encountered by CCTV systems such as variations in illumination and high compression levels. The main aim of this thesis is to investigate aspects of image quality and video compression that may affect the completion of police visual tasks/applications with respect to CCTV imagery. This is accomplished by investigating 3 specific police areas/tasks utilising: 1) the human visual system (HVS) for a face recognition task, 2) automated face recognition systems, and 3) automated human detection systems. These systems (HVS and automated) were assessed with defined scene content properties, and video compression, i.e. H.264/MPEG-4 AVC. The performance of imaging systems/processes (e.g. subjective investigations, performance of compression algorithms) are affected by scene content properties. No other investigation has been identified that takes into consideration scene content properties to the same extend. Results have shown that the HVS is more sensitive to compression effects in comparison to the automated systems. In automated face recognition systems, `mixed lightness' scenes were the most affected and `low lightness' scenes were the least affected by compression. In contrast the HVS for the face recognition task, `low lightness' scenes were the most affected and `medium lightness' scenes the least affected. For the automated human detection systems, `close distance' and `run approach' are some of the most commonly affected scenes. Findings have the potential to broaden the methods used for testing imaging systems for security applications.
Resumo:
[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...