940 resultados para visitor information, network services, data collecting, data analysis, statistics, locating


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strategic management of information plays a fundamental role in the organizational management process since the decision-making process depend on the need for survival in a highly competitive market. Companies are constantly concerned about information transparency and good practices of corporate governance (CG) which, in turn, directs relations between the controlling power of the company and investors. In this context, this article presents the relationship between the disclosing of information of joint-stock companies by means of using XBRL, the open data model adopted by the Brazilian government, a model that boosted the publication of Information Access Law (Lei de Acesso à Informação), nº 12,527 of 18 November 2011. Information access should be permeated by a mediation policy in order to subsidize the knowledge construction and decision-making of investors. The XBRL is the main model for the publishing of financial information. The use of XBRL by means of new semantic standard created for Linked Data, strengthens the information dissemination, as well as creates analysis mechanisms and cross-referencing of data with different open databases available on the Internet, providing added value to the data/information accessed by civil society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the era of the Internet of Everything, a user with a handheld or wearable device equipped with sensing capability has become a producer as well as a consumer of information and services. The more powerful these devices get, the more likely it is that they will generate and share content locally, leading to the presence of distributed information sources and the diminishing role of centralized servers. As of current practice, we rely on infrastructure acting as an intermediary, providing access to the data. However, infrastructure-based connectivity might not always be available or the best alternative. Moreover, it is often the case where the data and the processes acting upon them are of local scopus. Answers to a query about a nearby object, an information source, a process, an experience, an ability, etc. could be answered locally without reliance on infrastructure-based platforms. The data might have temporal validity limited to or bounded to a geographical area and/or the social context where the user is immersed in. In this envisioned scenario users could interact locally without the need for a central authority, hence, the claim of an infrastructure-less, provider-less platform. The data is owned by the users and consulted locally as opposed to the current approach of making them available globally and stay on forever. From a technical viewpoint, this network resembles a Delay/Disruption Tolerant Network where consumers and producers might be spatially and temporally decoupled exchanging information with each other in an adhoc fashion. To this end, we propose some novel data gathering and dissemination strategies for use in urban-wide environments which do not rely on strict infrastructure mediation. While preserving the general aspects of our study and without loss of generality, we focus our attention toward practical applicative scenarios which help us capture the characteristics of opportunistic communication networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Simulation Automation Framework for Experiments (SAFE) streamlines the de- sign and execution of experiments with the ns-3 network simulator. SAFE ensures that best practices are followed throughout the workflow a network simulation study, guaranteeing that results are both credible and reproducible by third parties. Data analysis is a crucial part of this workflow, where mistakes are often made. Even when appearing in highly regarded venues, scientific graphics in numerous network simulation publications fail to include graphic titles, units, legends, and confidence intervals. After studying the literature in network simulation methodology and in- formation graphics visualization, I developed a visualization component for SAFE to help users avoid these errors in their scientific workflow. The functionality of this new component includes support for interactive visualization through a web-based interface and for the generation of high-quality, static plots that can be included in publications. The overarching goal of my contribution is to help users create graphics that follow best practices in visualization and thereby succeed in conveying the right information about simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The recent development of semi-automated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. Methods: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. Results: We found that graphical representations can reveal substantial non-biological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. Conclusions: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen and water are essential for plant growth and development. In this study, we designed experiments to produce gene expression data of poplar roots under nitrogen starvation and water deprivation conditions. We found low concentration of nitrogen led first to increased root elongation followed by lateral root proliferation and eventually increased root biomass. To identify genes regulating root growth and development under nitrogen starvation and water deprivation, we designed a series of data analysis procedures, through which, we have successfully identified biologically important genes. Differentially Expressed Genes (DEGs) analysis identified the genes that are differentially expressed under nitrogen starvation or drought. Protein domain enrichment analysis identified enriched themes (in same domains) that are highly interactive during the treatment. Gene Ontology (GO) enrichment analysis allowed us to identify biological process changed during nitrogen starvation. Based on the above analyses, we examined the local Gene Regulatory Network (GRN) and identified a number of transcription factors. After testing, one of them is a high hierarchically ranked transcription factor that affects root growth under nitrogen starvation. It is very tedious and time-consuming to analyze gene expression data. To avoid doing analysis manually, we attempt to automate a computational pipeline that now can be used for identification of DEGs and protein domain analysis in a single run. It is implemented in scripts of Perl and R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use electronic communication networks for more than simply traditional telecommunications: we access the news, buy goods online, file our taxes, contribute to public debate, and more. As a result, a wider array of privacy interests is implicated for users of electronic communications networks and services. . This development calls into question the scope of electronic communications privacy rules. This paper analyses the scope of these rules, taking into account the rationale and the historic background of the European electronic communications privacy framework. We develop a framework for analysing the scope of electronic communications privacy rules using three approaches: (i) a service-centric approach, (ii) a data-centric approach, and (iii) a value-centric approach. We discuss the strengths and weaknesses of each approach. The current e-Privacy Directive contains a complex blend of the three approaches, which does not seem to be based on a thorough analysis of their strengths and weaknesses. The upcoming review of the directive announced by the European Commission provides an opportunity to improve the scoping of the rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput assays, such as yeast two-hybrid system, have generated a huge amount of protein-protein interaction (PPI) data in the past decade. This tremendously increases the need for developing reliable methods to systematically and automatically suggest protein functions and relationships between them. With the available PPI data, it is now possible to study the functions and relationships in the context of a large-scale network. To data, several network-based schemes have been provided to effectively annotate protein functions on a large scale. However, due to those inherent noises in high-throughput data generation, new methods and algorithms should be developed to increase the reliability of functional annotations. Previous work in a yeast PPI network (Samanta and Liang, 2003) has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional associations between proteins, and hence suggest their functions. One advantage of the work is that their algorithm is not sensitive to noises (false positives) in high-throughput PPI data. In this study, we improved their prediction scheme by developing a new algorithm and new methods which we applied on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting functionally associated proteins. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as independent and unbiased benchmarks to evaluate our algorithms and methods within the human PPI network. We showed that, compared with the previous work from Samanta and Liang, our algorithm and methods developed in this study improved the overall quality of functional inferences for human proteins. By applying the algorithms to the human PPI network, we obtained 4,233 significant functional associations among 1,754 proteins. Further comparisons of their KEGG and GO annotations allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made pathway analysis to identify several subclusters that are highly enriched in certain signaling pathways. Particularly, we performed a detailed analysis on a subcluster enriched in the transforming growth factor β signaling pathway (P<10-50) which is important in cell proliferation and tumorigenesis. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotations in this post-genomic era.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Record linkage of existing individual health care data is an efficient way to answer important epidemiological research questions. Reuse of individual health-related data faces several problems: Either a unique personal identifier, like social security number, is not available or non-unique person identifiable information, like names, are privacy protected and cannot be accessed. A solution to protect privacy in probabilistic record linkages is to encrypt these sensitive information. Unfortunately, encrypted hash codes of two names differ completely if the plain names differ only by a single character. Therefore, standard encryption methods cannot be applied. To overcome these challenges, we developed the Privacy Preserving Probabilistic Record Linkage (P3RL) method. METHODS In this Privacy Preserving Probabilistic Record Linkage method we apply a three-party protocol, with two sites collecting individual data and an independent trusted linkage center as the third partner. Our method consists of three main steps: pre-processing, encryption and probabilistic record linkage. Data pre-processing and encryption are done at the sites by local personnel. To guarantee similar quality and format of variables and identical encryption procedure at each site, the linkage center generates semi-automated pre-processing and encryption templates. To retrieve information (i.e. data structure) for the creation of templates without ever accessing plain person identifiable information, we introduced a novel method of data masking. Sensitive string variables are encrypted using Bloom filters, which enables calculation of similarity coefficients. For date variables, we developed special encryption procedures to handle the most common date errors. The linkage center performs probabilistic record linkage with encrypted person identifiable information and plain non-sensitive variables. RESULTS In this paper we describe step by step how to link existing health-related data using encryption methods to preserve privacy of persons in the study. CONCLUSION Privacy Preserving Probabilistic Record linkage expands record linkage facilities in settings where a unique identifier is unavailable and/or regulations restrict access to the non-unique person identifiable information needed to link existing health-related data sets. Automated pre-processing and encryption fully protect sensitive information ensuring participant confidentiality. This method is suitable not just for epidemiological research but also for any setting with similar challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important competence of human data analysts is to interpret and explain the meaning of the results of data analysis to end-users. However, existing automatic solutions for intelligent data analysis provide limited help to interpret and communicate information to non-expert users. In this paper we present a general approach to generating explanatory descriptions about the meaning of quantitative sensor data. We propose a type of web application: a virtual newspaper with automatically generated news stories that describe the meaning of sensor data. This solution integrates a variety of techniques from intelligent data analysis into a web-based multimedia presentation system. We validated our approach in a real world problem and demonstrate its generality using data sets from several domains. Our experience shows that this solution can facilitate the use of sensor data by general users and, therefore, can increase the utility of sensor network infrastructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Linked Data initiative offers a straight method to publish structured data in the World Wide Web and link it to other data, resulting in a world wide network of semantically codified data known as the Linked Open Data cloud. The size of the Linked Open Data cloud, i.e. the amount of data published using Linked Data principles, is growing exponentially, including life sciences data. However, key information for biological research is still missing in the Linked Open Data cloud. For example, the relation between orthologs genes and genetic diseases is absent, even though such information can be used for hypothesis generation regarding human diseases. The OGOLOD system, an extension of the OGO Knowledge Base, publishes orthologs/diseases information using Linked Data. This gives the scientists the ability to query the structured information in connection with other Linked Data and to discover new information related to orthologs and human diseases in the cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban researchers and planners are often interested in understanding how economic activities are distributed in urban regions, what forces influence their special pattern and how urban structure and functions are mutually dependent. In this paper, we want to show how an algorithm for ranking the nodes in a network can be used to understand and visualize certain commercial activities of a city. The first part of the method consists of collecting real information about different types of commercial activities at each location in the urban network of the city of Murcia, Spain. Four clearly differentiated commercial activities are studied, such as restaurants and bars, shops, banks and supermarkets or department stores, but obviously we can study other. The information collected is then quantified by means of a data matrix, which is used as the basis for the implementation of a PageRank algorithm which produces a ranking of all the nodes in the network, according to their significance within it. Finally, we visualize the resulting classification using a colour scale that helps us to represent the business network.