904 resultados para vernalization-related gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital long QT syndrome (LQTS) with an estimated prevalence of 1:2000-1:10 000 manifests with prolonged QT interval on electrocardiogram and risk for ventricular arrhythmias and sudden death. Several ion channel genes and hundreds of mutations in these genes have been identified to underlie the disorder. In Finland, four LQTS founder mutations of potassium channel genes account for up to 40-70% of genetic spectrum of LQTS. Acquired LQTS has similar clinical manifestations, but often arises from usage of QT-prolonging medication or electrolyte disturbances. A prolonged QT interval is associated with increased morbidity and mortality not only in clinical LQTS but also in patients with ischemic heart disease and in the general population. The principal aim of this study was to estimate the actual prevalence of LQTS founder mutations in Finland and to calculate their effect on QT interval in the Finnish background population. Using a large population-based sample of over 6000 Finnish individuals from the Health 2000 Survey, we identified LQTS founder mutations KCNQ1 G589D (n=8), KCNQ1 IVS7-2A>G (n=1), KCNH2 L552S (n=2), and KCNH2 R176W (n=16) in 27 study participants. This resulted in a weighted prevalence estimate of 0.4% for LQTS in Finland. Using a linear regression model, the founder mutations resulted in a 22- to 50-ms prolongation of the age-, sex-, and heart rate-adjusted QT interval. Collectively, these data suggest that one of 250 individuals in Finland may be genetically predisposed to ventricular arrhythmias arising from the four LQTS founder mutations. A KCNE1 D85N minor allele with a frequency of 1.4% was associated with a 10-ms prolongation in adjusted QT interval and could thus identify individuals at increased risk of ventricular arrhythmias at the population level. In addition, the previously reported associations of KCNH2 K897T, KCNH2 rs3807375, and NOS1AP rs2880058 with QT interval duration were confirmed in the present study. In a separate study, LQTS founder mutations were identified in a subgroup of acquired LQTS, providing further evidence that congenital LQTS gene mutations may underlie acquired LQTS. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by exercise-induced ventricular arrhythmias in a structurally normal heart and results from defects in the cardiac Ca2+ signaling proteins, mainly ryanodine receptor type 2 (RyR2). In a patient population of typical CPVT, RyR2 mutations were identifiable in 25% (4/16) of patients, implying that noncoding variants or other genes are involved in CPVT pathogenesis. A 1.1 kb RyR2 exon 3 deletion was identified in two patients independently, suggesting that this region may provide a new target for RyR2-related molecular genetic studies. Two novel RyR2 mutations showing a gain-of-function defect in vitro were identified in three victims of sudden cardiac death. Extended pedigree analyses revealed some surviving mutation carriers with mild structural abnormalities of the heart and resting ventricular arrhythmias suggesting that not all RyR2 mutations lead to a typical CPVT phenotype, underscoring the relevance of tailored risk stratification of a RyR2 mutation carrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon-gamma (IFN gamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NF kappa B) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFN gamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of asubset of only GAS containing immune genes were modulated by IFN gamma. As a significant correlation exists between GAS containing immune genes and IFN gamma-regulated gene expression, this strategy may identify novel IFN gamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFN gamma in mediating a plethoraof functions: anti-microbial responses, antigen processing,inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge onIFN gamma mediated signaling and functions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease. Conclusions: The MDH1 gene is not the cause of RP28-linked arRP. Our experimental strategy shows that long-range genomic PCR followed by UHTs provides an excellent system to perform a thorough screening of candidate genes for hereditary retinal degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an epidemiological study of symptomatic human rotaviruses in Mysore, India during 1993 and 1994, isolates MP409 and MP480 were isolated from two children suffering from severe, acute dehydrating diarrhea. Both isolates exhibited 'long' RNA pattern and subgroup I specificity suggesting the likelihood of their animal origin. Both isolates did not react with monoclonal antibodies (MAbs) specific for serotypes G1 to G6 as well as CIO. To determine the genetic origin of these isolates, complete nucleotide sequences of genes encoding the outer capsid proteins VP4 and VP7, nonstructural proteins NSP1 and NSP3 and viral enterotoxin protein NSP4 from MP409 and partial sequences of genes from MP480 were determined. Comparison of the 5' and 3' terminal sequences of 250 nucleotides revealed complete identity of the gene sequences in both strains suggesting that MP409 and MP480 are two different isolates of a single strain. Comparison of the nucleotide and deduced amino acid sequences of VP4, VP7, NSP1 and NSP3 of MP409 with published sequences of strains belonging to different serotypes revealed that both outer capsid proteins VP4 and VP7 and NSP1 are highly related to the respective proteins from the P6[1], G8 type bovine rotavirus A5 isolated from a calf with diarrhoea in Thailand and that the NSP3 is highly homologous to that of bovine rotaviruses. The NSP 1 protein showed greatest sequence identity with NSP4s belonging to the KUN genetic group to which NSP4s from human G2 type strains and bovine rotaviruses belong. MP409 and MP480 likely signify interspecies transmission of P6[1], G8 type strains from cattle to humans and represent the first P6[1] type rotaviruses isolated in humans. These and our previous studies on the asymptomatic neonatal strain I321 are of evolutionary and epidemiological significance in the context of close association of majority of the Indian population with cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In higher primates, although LH/CG play a critical role in the control of corpus luteum (CL) function, the direct effects of progesterone (P4) in the maintenance of CL structure and function are unclear. Several experiments were conducted in the bonnet monkey to examine direct effects of P4 on gene expression changes in the CL, during induced luteolysis and the late luteal phase of natural cycles. Methods: To identify differentially expressed genes encoding PR, PR binding factors, cofactors and PR downstream signaling target genes, the genome-wide analysis data generated in CL of monkeys after LH/P-4 depletion and LH replacement were mined and validated by real-time RT-PCR analysis. Initially, expression of these P4 related genes were determined in CL during different stages of luteal phase. The recently reported model system of induced luteolysis, yet capable of responsive to tropic support, afforded an ideal situation to examine direct effects of P4 on structure and function of CL. For this purpose, P4 was infused via ALZET pumps into monkeys 24 h after LH/P4 depletion to maintain mid luteal phase circulating P4 concentration (P4 replacement). In another experiment, exogenous P4 was supplemented during late luteal phase to mimic early pregnancy. Results: Based on the published microarray data, 45 genes were identified to be commonly regulated by LH and P4. From these 19 genes belonging to PR signaling were selected to determine their expression in LH/P-4 depletion and P4 replacement experiments. These 19 genes when analyzed revealed 8 genes to be directly responsive to P4, whereas the other genes to be regulated by both LH and P4. Progesterone supplementation for 24 h during the late luteal phase also showed changes in expression of 17 out of 19 genes examined. Conclusion: These results taken together suggest that P4 regulates, directly or indirectly, expression of a number of genes involved in the CL structure and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte. We found the gene coding for PF3D7_0201800 to be located in a chromosomal cluster together with knob components KAHRP and PfEMP3. Like the knob components, KAHsp40 too showed the presence of PEXEL motif required for transport to the erythrocyte compartment. Indeed, sub-cellular fractionation and immunofluorescence analysis (IFA) showed KAHsp40 to be exported in the erythrocyte cytoplasm in a stage dependent manner localizing as punctuate spots in the erythrocyte periphery, distinctly from Maurer's cleft, in structures which could be the reminiscent of knobs. Double IFA analysis revealed co-localization of PF3D7_0201800 with the markers of knobs (KAHRP, PfEMP1 and PfEMP3) and components of the PEXEL translocon (Hsp101, PTEX150). KAHsp40 was also found to be in a complex with KAHRP, PfEMP3 and Hsp101 as confirmed by co-immunoprecipitation assay. Our results suggest potential involvement of a parasite encoded Hsp40 in chaperoning knob assembly in the erythrocyte compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose: Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. Methodology/Principal Findings: In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and Wi-N for cancer treatment and development of new anti-cancer phytochemical cocktails.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The number of genome-wide association studies (GWAS) has increased rapidly in the past couple of years, resulting in the identification of genes associated with different diseases. The next step in translating these findings into biomedically useful information is to find out the mechanism of the action of these genes. However, GWAS studies often implicate genes whose functions are currently unknown; for example, MYEOV, ANKLE1, TMEM45B and ORAOV1 are found to be associated with breast cancer, but their molecular function is unknown. Results: We carried out Bayesian inference of Gene Ontology (GO) term annotations of genes by employing the directed acyclic graph structure of GO and the network of protein-protein interactions (PPIs). The approach is designed based on the fact that two proteins that interact biophysically would be in physical proximity of each other, would possess complementary molecular function, and play role in related biological processes. Predicted GO terms were ranked according to their relative association scores and the approach was evaluated quantitatively by plotting the precision versus recall values and F-scores (the harmonic mean of precision and recall) versus varying thresholds. Precisions of similar to 58% and similar to 40% for localization and functions respectively of proteins were determined at a threshold of similar to 30 (top 30 GO terms in the ranked list). Comparison with function prediction based on semantic similarity among nodes in an ontology and incorporation of those similarities in a k nearest neighbor classifier confirmed that our results compared favorably. Conclusions: This approach was applied to predict the cellular component and molecular function GO terms of all human proteins that have interacting partners possessing at least one known GO annotation. The list of predictions is available at http://severus.dbmi.pitt.edu/engo/GOPRED.html. We present the algorithm, evaluations and the results of the computational predictions, especially for genes identified in GWAS studies to be associated with diseases, which are of translational interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast Rpb4, a subunit of RNA pol II is not essential for viability but is involved in multiple cellular phenotypes such as temperature sensitivity, enhanced pseudohyphal morphology, and decreased sporulation. Both in vivo and in vitro studies strongly support involvement of Rpb4 in transcription initiation, while its role in transcription elongation is not entirely consistent. Here we show that Rpb4 is not required for recruitment of RNA pol II on the coding region of YLR454w, a representative long gene. Yet we find strong genetic interaction of rpb4 Delta with mutants in many transcription elongation factors such as Paf1, Spt4, Dst1, Elp3 and Rpb9. We demonstrate that, Rpb4 interacts functionally with Paf1 to affect the transcription elongation of the FKS1 gene. Our results suggest that while Rpb4 is not required for general transcription elongation, it could support transcription elongation for specific of class of genes by interaction with other elongation factors. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a complex disease which arises due to a series of genetic changes related to cell division and growth control. Cancer remains the second leading cause of death in humans next to heart diseases. As a testimony to our progress in understanding the biology of cancer and developments in cancer diagnosis and treatment methods, the overall median survival time of all cancers has increased six fold one year to six years during the last four decades. However, while the median survival time has increased dramatically for some cancers like breast and colon, there has been only little change for other cancers like pancreas and brain. Further, not all patients having a single type of tumour respond to the standard treatment. The differential response is due to genetic heterogeneity which exists not only between tumours, which is called intertumour heterogeneity, but also within individual tumours, which is called intratumoural heterogeneity. Thus it becomes essential to personalize the cancer treatment based on a specific genetic change in a given tumour. It is also possible to stratify cancer patients into low- and high-risk groups based on expression changes or alterations in a group of genes gene signatures and choose a more suitable mode of therapy. It is now possible that each tumour can be analysed using various high-throughput methods like gene expression profiling and next-generation sequencing to identify its unique fingerprint based on which a personalized or tailor-made therapy can be developed. Here, we review the important progress made in the recent years towards personalizing cancer treatment with the use of gene signatures.