559 resultados para valves
Resumo:
Sea-ice growth and decay in Antarctica is one of the biggest seasonal changes on Earth, expanding ice cover from 4x10**6 km**2 to a maximum of 19x10**6 km**2 during the austral winter. Analyses of six marine sediment cores from the Scotia Sea, SW Atlantic, yield records of sea-ice migration across the basin since the Lateglacial. The cores span nearly ten degrees of latitude from the modern seasonal sea-ice zone to the modern Polar Front. Surface sediments in the cores comprise predominantly diatomaceous oozes and muddy diatom oozes that reflect Holocene conditions. The cores exhibit similar down-core stratigraphies with decreasing diatom concentrations and increasing magnetic susceptibility from modern through to the Last Glacial Maximum (LGM). Sediments in all cores contain sea-ice diatoms that preserve a signal of changing sea-ice cover and permit reconstruction of past sea-ice dynamics. The sea-ice records presented here are the first to document the position of both the summer and winter sea-ice cover at the Last Glacial Maximum (LGM) in the Scotia Sea. Comparison of the LGM and Holocene sea-ice conditions shows that the average winter sea-ice extent was at least 5° further north at the LGM. Average summer sea-ice extent was south of the most southerly core site at the LGM, and suggests that sea-ice expanded from approximately 61°S to 52°S each season. Our data also suggest that the average summer sea-ice position at the LGM was not the maximum extent of summer sea-ice during the last glacial. Instead, the sediments contain evidence of a pre-LGM maximum extent of summer sea-ice between ab. 30 ka and 22 ka that extended to ab. 59°S, close to the modern average winter sea-ice limit. Based on our reconstruction we propose that the timing of the maximum extent of summer sea-ice and subsequent retreat by 22 ka, could be insolation controlled and that the strong links between sea-ice and bottom water formation provide a potential mechanism by which Southern Hemisphere regional sea-ice dynamics at the LGM could have a global impact and promote deglaciation.
Resumo:
The first studies of microalgae fluxes over the Lomonosov Ridge in the northern Laptev Sea were carried out with a sediment trap at the year-long mooring station LOMO-2, installed at 150 m depth from September 15, 1995 to August 16, 1996. These studies demonstrated essential seasonal variations of vertical microalgae flux. It was shown that in summer diverse flora (composed mainly of cryophylic diatoms) growed intensively beneath the permanent ice cover. Strongly pronounced seasonal variations of microalgae growth correlate closely with solar radiation. Exactly during the maximum insolation period, from the middle of July until the end of September, the microalgae flux was hundreds of times higher than that in the rest of the year. Summer values of the microalgae flux over the Lomonosov Ridge in the northern Laptev Sea were similar to those in the Weddell Sea (Antarctic) and exceeded summer flux values in the Norwegian and Greenland Seas and in the St. Anna Trough (northwestern Kara Sea).
Resumo:
We studied the siliceous microplankton assemblages (mainly diatoms) from plankton tows (mesh size 20 µm) and surface sediment samples collected along a N-S transect in the northern Red Sea (28-21°N). In addition, we analyzed differences/similarities between plankton and sediment assemblages within a brine-filled basin (the southern basin) of the Shaban Deep and compared these assemblages with those from outside the brine. Plankton samples revealed the overwhelming dominance of diatoms over other siliceous groups. Diatoms accounted for ca. 97% of all biosiliceous particles at 120-20 m (vs. 2.9% silicoflagellates and 0.4% radiolarians), and ca. 94% at 200-120 m (vs. 4.5% silicoflagellates and 1.6% radiolarians). In general, a marine, warm-water (tropical/subtropical) diatom assemblage characterizes the plankton samples. Representatives of the Nitzschia bicapitata group are by far the most abundant contributors at both depth intervals (average=43%), ranging from ca. 30% in the North to ca. 60% in the South. Biogenic opal content in non-brine surface sediments is very low, (below 0.2 wt.% SiO2); and concentration of siliceous microorganisms is also low and of the order of 5*10**3-10**4 microorganisms/g dry sediment. Diatoms are the main contributors to the opal signal in the 20-40 µm fraction, while they share dominance with radiolarians in the >40 µm fraction. Total diatom concentrations average 1.2*10**4 valves/g in the 20-40 µm fraction and 4*10**3 valves/g in the >40 µm fraction. Robust taxa of warm water affinity (Alveus marinus, Azpeitia neocrenulata, Azpeitia nodulifera and Roperia tesselata) characterize the surface sediments. In contrast, biogenic opal content in brine surface sediment samples is much higher than in the non-brine samples, ranging from 2.8 to 3.8 wt.% SiO2, and concentration of siliceous microorganisms is 3-4 orders of magnitude higher. In addition here, diatoms dominate the opal signal. The taxa found in these samples are a mixture of non-brine and plankton samples, and fragile forms (e.g., N. bicapitata group, Neodelphineis indica) are well preserved in these sediments. Thus, brine sediments in this region seem to offer a great potential for palaeoenvironmental studies.
Resumo:
The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming (Graversen et al., 2008, doi:10.1038/nature06502) and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized (Kitchell and Clark, 1982, doi:10.1016/0031-0182(82)90087-6). Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre (Dore et al., 2008, doi:10.1016/j.pocean.2007.10.002), or those indicated for the Mediterranean sapropels (Kemp et al., 1999, doi:10.1038/18001). With increased CO2 levels and warming currently driving increased stratification in the global ocean (Sarmiento et al., 1998, doi:10.1038/30455), this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean (Falcon-Lang et al., 2004, doi:10.1016/j.palaeo.2004.05.016; Amiot et al., 2004, doi:10.1016/j.epsl.2004.07.015; Otto-Bliesner et al., 2002, doi:10.1029/2001JD000821), rather than recent suggestions of a 15 °C mean annual temperature at this time (Jenkyns et al., 2004, doi:10.1038/nature03143).
Resumo:
Fossil ostracods were investigated in five AMS14C-dated cores from different parts of the Laptev and Kara seas. Three cores from the Laptev Sea shelf are located in river paleovalleys, and one core originates from the western continental slope. The core from the Kara Sea was obtained in the eastern shelf region. Six fossil assemblages were distinguished: estuarine (1), inner-shelf (2), middle-shelf (3), outer-shelf (4), Pre-Holocene upper continental slope (5), and Holocene upper continental slope (6). They show that during the Postglacial sea-level rise there was a transition from estuarine brackish-water environment to modern marine conditions. Assemblages 1-3 are present in the eastern Laptev Sea with the oldest ostracod-bearing samples aging back to 11.4-11.3 cal.ka. Cores from the western Laptev Sea (12.3 cal.ka, assemblages 1-4) and the Kara Sea (8.1 cal.ka, assemblages 2-4) demonstrate similar pattern in assemblage replacement, but contain a number of relatively deep-water species reflecting stronger influence of open-sea waters. Core from the continental slope, water depth 270 m (~ 17 cal.ka) encompasses assemblages 5 and 6, which are absent in the shelf cores. Assemblage 5 stands out as a specific community dominated by relatively deep-water Arctic and North Atlantic species together with euryhaline ones. The assemblages indicate inflows of Atlantic-derived waters and downslope slides due to the proximity to the paleocoastline. Assemblage (6) is similar to the modern local ostracod assemblage at this site.
Resumo:
A 5-year sediment trap survey in the upwelling area off Cape Blanc (NW Africa) provides information on the seasonal and annual resting cyst production of dinoflagellates, their sinking characteristics and preservation potential. Strong annual variation in cyst production characterizes the region. Cyst production of generally all investigated species, including Alexandrium pseudogonyaulax (Biecheler) T. Horig. ex T. Kita et Fukuyo (cyst genus Impagidinium) and Gonyaulax spinifera (Clap. et J. Lachm.) Diesing (cyst genus Nematosphaeropsis) was enhanced with increasing upper water nutrient and trace-element concentrations. Cyst production of Lingulodinium polyedrum (F. Stein) J. D. Dodge was the highest at the transition between upwelling and upwelling-relaxation. Cyst production of Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium monospinum (Paulsen) K. A. F. Zonn. et B. Dale, and Protoperidinium stellatum (D. Wall) Balech, and heterotrophic dinoflagellates forming Brigantedinium spp. and Echinidinium aculeatum Zonn., increased most pronouncedly during upwelling episodes. Production of Protoperidinium conicum (Gran) Balech and Protoperidinium pentagonum (Gran) Balech cysts and total diatom valves were related, providing evidence of a predator-prey relationship. The export cyst-flux of E. aculeatum, P. americanum, P. monospinum, and P. stellatum was strongly linked to the flux of total diatom valves and CaCO3, whereas the export production of Echinidinium granulatum Zonn. and Protoperidinium subinerme (Paulsen) A. R. Loebl. correlated with total organic carbon, suggesting potential consumption of diatoms, prymnesiophytes, and organic matter, respectively. Sinking velocities were at least 274 m · d**-1, which is in range of the diatom- and coccolith-based phytoplankton aggregates and "slower" fecal pellets. Species-selective degradation did not occur in the water column, but on the ocean floor.
Resumo:
This work is the first detailed description of the Late Pleistocene-Holocene and Recent Ostracoda of the Laptev Sea. A total of 45 species in 22 genera and 13 families have been identified. All these species are described monographically. Three different ecological assemblages of ostracodes corresponding to different combinations of environmental parameters have been established; they are restricted to three regions of the sea: western-central, eastern, and southern. The recent ostracode assemblages of the Laptev Sea have been compared with those from other Arctic areas and are most similar to those of the Beaufort and Kara seas. Data on recent Ostracoda are used for paleoenvironmental reconstructions on the eastern shelf and western continental slope of the Laptev Sea. For this purpose, ostracodes from five sections obtained from these parts of the sea have been examined. The oldest sediments, which are of Late Pleistocene age (15.8 cal. ka BP), have been recovered in a core from the western continental slope. These yielded five ostracode assemblages, which correspond to different paleoenvironments and replaced each other in the course of the rapid postglacial sea-level rise, thus showing variations in the Atlantic water inflow from the west and freshwater discharge from the subaerially exposed shelf. On the outer shelf of the eastern part of the sea, the rapid sea-level rise in the Early Holocene (lowermost dating 11.3 cal. ka BP) led to a rapid transition from assemblages of brackish-water nearshore environments to those of modernlike normal marine environments; modern environments were established about 8.2 cal. ka ago. Since core sections from the inner shelf correspond to the time when the level of the sea had already reached its modern values, changes in taxonomic composition of ostracode assemblages primarily mirror variations in river runoff.