618 resultados para tryptophanyl tRNA synthetase
Resumo:
The evidentiary basis of the currently accepted classification of living amphibians is discussed and shown not to warrant the degree of authority conferred on it by use and tradition. A new taxonomy of living amphibians is proposed to correct the deficiencies of the old one. This new taxonomy is based on the largest phylogenetic analysis of living Amphibia so far accomplished. We combined the comparative anatomical character evidence of Haas (2003) with DNA sequences from the mitochondrial transcription unit HI (12S and 16S ribosomal RNA and tRNA(Valine) genes, 2,400 bp of mitochondrial sequences) and the nuclear genes histone H3, rhodopsin, tyrosinase, and seven in absentia, and the large ribosomal subunit 28S (approximate to 2,300 bp of nuclear sequences; ca. 1.8 million base pairs; x ($) over bar = 3.7 kb/terminal). The dataset includes 532 terminals sampled from 522 species representative of the global diversity of amphibians as well as seven of the closest living relatives of amphibians for outgroup comparisons.
Resumo:
A molecular phylogenetic analysis of the Hyla pulchella species group was performed to test its monophyly, explore the interrelationships of its species, and evaluate the validity of the taxa that were considered subspecies of H. pulchella. Approximately 2.8 kb from the mitochondrial genes 12s, tRNA valine, 16s, and Cytochrome b were sequenced. The analysis included 50 terminals representing 10 of the 14-15 species currently recognized in the H. pulchella group, including samples from several localities for some taxa, several outgroups, as well as two species previously suspected to be related with the group (Hyla guentheri and Hyla hischoffi). The results show that the H. pulchella and Hyla circumdata groups are distantly related, and, therefore, should be recognized as separate groups. As currently defined, the H. pulchella group is paraphyletic with respect to the Hyla polytaenia group; therefore, we recognize the Hyla polytaenia clade in the H. pulchella group. Two subspecies of H. pulchella recognized by some authors are considered full species including Hyla pulchella riojana because it is only distantly related to H. pulchella, and Hyla pulchella cordobae because molecular and non-molecular evidence suggests that it is specifically distinct. With the inclusion of the H. polytaenia clade, H. guentheri, and H. bischoffi, and the recognition of the two former subspecies of H. pulchella as distinct species, the H. pulchella group now comprises 25 described species. All representatives of the H. pulchella group with an Andean distribution are monophyletic and nested within a clade from the Atlantic forest from south-southeastern Brazil/northeastern Argentina, and Cerrado gallery forest from central Brazil. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The first quantitative analysis of phylogenetic relationships of green lacewings (Chrysopidae) is presented based on DNA sequence data. A single nuclear and two mitochondrial genes are used in the analysis: carbomoylphosphate synthase (CPS) domain of carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) (i.e. rudimentary locus), large subunit ribosomal gene (16S) and cytochrome oxidase I (COI). This study represents the first use of the CAD gene to investigate phylogenetic relationships of the lacewings. DNA sequences for 33 chrysopid species from 18 genera, representing all subfamilies and tribes, were compared with outgroups sampled from families Hemerobiidae, Osmylidae and Polystoechotidae. Parsimony analyses of the combined data set recovered all of the previously established subfamilial and tribal groups as monophyletic clades (although relatively weakly supported) except Apochrysinae sensu lato. The enigmatic Nothancyla verreauxi Navas has historically been difficult to place in a subfamily group based on morphological characteristics; molecular data presented herein do not adequately resolve this problem.
Resumo:
The circumventricular structures of the central nervous system and nitric oxide are involved in arterial blood pressure control, and general anesthesia may stimulate the central renin-angiotensin system. We therefore investigated the central role of angiotensin 11 and nitric oxide on the regulation of systemic arterial blood pressure in conscious and anesthetized rats. METHODS: Rats with stainless steel cannulae implanted into their lateral ventricle were studied. We injected the AT(1) and AT(2) angiotensin 11 receptor antagonists, losartan and PD123319, L-NAME, 7-nitroindazole (nitric oxide synthetase inhibitors), and FK409 (nitric oxide donor agent) into the lateral ventricles. Mean arterial blood pressure (MAP) was recorded in conscious and zoletil-anesthetized rats. RESULTS: Mean +/- (SEM) baseline MAP was 117.5 +/- 2 mm Hg. Angiotensin II injected into the brain lateral ventricle increased MAP from 136.5 +/- 2 min Hg to 138.5 +/- 4 mm Hg (Delta 16 +/- 3 mm Hg to Delta 21 +/- 3 mm Hg) for all experimental groups versus control from 116 +/- 2 mm Hg to 120 +/- 3 mm Hg (Delta 3 +/- 1 mm Hg to A5 +/- 2 mm Hg) (P < 0.05). L-NAME or 7-nitroindazole enhanced the angiotensin II pressor effect (P < 0.05). Prior injection of losartan and PD123319 decreased the angiotensin 11 pressor effect and the enhancement effect of L-NAME and 7-nitroindazole (P < 0.05). Zoletil anesthesia did not interfere with the effects of angiotensin 11, AT,, AT2 antagonists, or nitric oxide synthetase inhibitors. CONCLUSIONS: Endogenous nitric oxide functions tonically as a central inhibitory modulator of the angiotensinergic system. AT, and AT2 receptors influence the angiotensin 11 central control of arterial blood pressure. Zoletil anesthesia did not interfere with these effects. (Anesth Analg 2007;105:1293-7)
Resumo:
The effects of the arachidonic acid metabolism inhibitors on the acetylcholine responses of aortae from control (CR) and deoxycorticosterone acetate (DOCA)-salt hypertensive (HR) rats were investigated. The acetylcholine decreased response observed in HR [relaxation (%): CR 95.5 +/- 2.7, n = 4; HR 52.0 +/- 6.3, n = 5, p < 0.05] was restored by the cyclooxygenase inhibitor piroxicam [relaxation (%): CR 99.8 +/- 0.2, n = 4; HR 86.0 +/- 4.0, n = 5] and by the thromboxane synthetase inhibitor and the thrombox ane A(2)/prostaglandin H-2 receptor antagonist ridogrel [relaxation (%): CR 92.1 +/- 4.4, n = 7; HR 93.1 +/- 2.0, n = 7] but not by the inhibitors of thromboxane synthetase, prostacyclin synthetase, cytochrome P-450 monooxygenase, and lipoxygenase. So, endoperoxide intermediates seem to be involved in the decreased endothelium-dependent relaxation to acetylcholine in DOCA-salt hypertension. (C) 1999 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5' end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the β subunit of eIF2 and its archaeal counterpart (aIF2β). aIF2β differs from eIF2β in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2β, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2β, but not in eIF5. We show that the sequence of eIF2B homologous to aIF2β is sufficient for binding eIF2γ, the only subunit with which it interacts, and comprises, at the most, 78 residues, eIF5 does not interact with eIF2γ, despite its similarity with eIF2β, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.
Resumo:
In the present study, we describe the cloning and characterization of a new SINE-like element from O. niloticus (ROn-2) and show the distribution of this SINE and a previously isolated SINE, ROn-1, in the chromosomes of O. niloticus. The ROn-2 element is 359 base pairs (bp) in length, contains short direct terminal repeats, a tRNA-related region similar to tRNA Val and tRNA Arg, a tRNA-unrelated region, and a poly-A tail. Analysis of the chromosomal distribution of ROn-1 and ROn-2 by fluorescent in situ hybridization showed that both SINE sequences are present in all chromosomes of tilapia, and organized in small clusters. The only exception was a large cluster of ROn-1 repeats found in the middle of the long arm of chromosome 1. In view of our data we discuss the hypothesis that the absence of large clusters of SINE sequences and the structural composition of these sequences may explain the absence of base-specific fluorochrome bands in the chromosomes of tilapia.
Resumo:
Hylidae is a large family of American, Australopapuan, and temperate Eurasian treefrogs of approximately 870 known species, divided among four subfamilies. Although some groups of Hylidae have been addressed phylogenetically, a comprehensive phylogenetic analysis has never been presented. The first goal of this paper is to review the current state of hylid systematics. We focus on the very large subfamily Hylinae (590 species), evaluate the monophyly of named taxa, and examine the evidential basis of the existing taxonomy. The second objective is to perform a phylogenetic analysis using mostly DNA sequence data in order to (1) test the monophyly of the Hylidae; (2) determine its constituent taxa, with special attention to the genera and species groups which form the subfamily Hylinae, and c) propose a new, monophyletic taxonomy consistent with the hypothesized relationships. We present a phylogenetic analysis of hylid frogs based on 276 terminals, including 228 hylids and 48 outgroup taxa. Included are exemplars of all but 1 of the 41 genera of Hylidae (of all four nominal subfamilies) and 39 of the 41 currently recognized species groups of the species-rich genus Hyla. The included taxa allowed us to test the monophyly of 24 of the 35 nonmonotypic genera and 25 species groups of Hyla. The phylogenetic analysis includes approximately 5100 base pairs from four mitochondrial (12S, tRNA valine, 16S, and cytochrome b) and five nuclear genes (rhodopsin, tyrosinase, RAG-1, seventh in absentia, and 28S), and a small data set from foot musculature. Concurring with previous studies, the present analysis indicates that Hemiphractinae are not related to the other three hylid subfamilies. It is therefore removed from the family and tentatively considered a subfamily of the paraphyletic Leptodactylidae. Hylidae is now restricted to Hylinae, Pelodryadinae, and Phyllomedusinae. Our results support a sister-group relationship between Pelodryadinae and Phyllomedusinae, which together form the sister taxon of Hylinae. Agalychnis, Phyllomedusa, Litoria, Hyla, Osteocephalus, Phrynohyas, Ptychohyla, Scinax, Smilisca, and Trachycephalus are not monophyletic. Within Hyla, the H. albomarginata, H. albopunctata, H. arborea, H. boons, H. cinerea, H. eximia, H. geographica, H. granosa, H. microcephala, H. miotympanum, H. tuberculosa, and H. versicolor groups are also demonstrably nonmonophyletic. Hylinae is composed of four major clades. The first of these includes the Andean stream-breeding Hyla, Aplastodiscus, all Gladiator Frogs, and a Tepuian clade. The second clade is composed of the 30-chromosome Hyla, Lysapsus, Pseudis, Scarthyla, Scinax (including the H. uruguaya group), Sphaenorhynchus, and Xenohyla. The third major clade is composed of Nyctimantis, Phrynohyas, Phyllodytes, and all South American/West Indian casque-headed frogs: Aparasphenodon, Argenteohyla, Corythomantis, Osteocephalus, Osteopilus, Tepuihyla, and Trachycephalus. The fourth major clade is composed of most of the Middle American/Holarctic species groups of Hyla and the genera Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, and Triprion. A new monophyletic taxonomy mirroring these results is presented where Hylinae is divided into four tribes. Of the species currently in Hyla, 297 of the 353 species are placed in 15 genera; of these, 4 are currently recognized, 4 are resurrected names, and 7 are new. Hyla is restricted to H. femoralis and the H. arborea, H. cinerea, H. eximia, and H. versicolor groups, whose contents are redefined. Phrynohyas is placed in the synonymy of Trachycephalus, and Pternohyla is placed in the synonymy of Smilisca. The genus Dendropsophus is resurrected to include all former species of Hyla known or suspected to have 30 chromosomes. Exerodonta is resurrected to include the former Hyla sumichrasti group and some members of the former H. miotympanum group. Hyloscirtus is resurrected for the former Hyla armata, H. bogotensis, and H. larinopygion groups. Hypsiboas is resurrected to include several species groups - many of them redefined here - of Gladiator Frogs. The former Hyla albofrenata and H. albosignata complexes of the H. albomarginata group are included in Aplastodiscus. New generic names are erected for (1) Agalychnis calcarifer and A. craspedopus; (2) Osteocephalus langsdorffii; the (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) and H. tuberculosa groups; (9) the clade composed of the H. pictipes and H. pseudopuma groups; and (10) a clade composed of the H. circumdata, H. claresignata, H. martinsi, and H. pseudopseudis groups. Copyright © American Museum of Natural History 2005.
Resumo:
Nuclear mitochondrial-like sequences (numts) are copies of mitochondrial DNA that have migrated to the genomic DNA. We present the first characterization of numts in ants, these numts being homologues to a mitochondrial DNA fragment containing loci the 3′ portion of the cytochrome oxidase I gene, an intergenic spacer, the tRNA leucine gene and the 5′ portion of the cytochrome oxidase II gene. All 67 specimens of Atta cephalotes (Hymenoptera: Formicidae: Attini) investigated had these homologues, which are within two monophyletic groups that we called numt1 and numt2. Numt1 and numt2 sequences are less variable than mitochondrial sequences and released from the severe purifying selection constraining the evolution of mitochondrial genes. Their formation probably involved bottlenecks related to two distinct transfer events of ancient and fast evolving mitochondrial DNA fragments to comparative slowly evolving nuclear DNA regions. © 2007 The Authors.
Resumo:
Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.
Resumo:
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein-protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer. © 2012 Springer-Verlag.
Resumo:
The use of prognostic markers for breast cancer allows therapeutic strategies to be defined more efficiently. The expression of glutathione (GSH) and glutathione peroxidase (GPX) in tumor cells has been evaluated as a predictor of prognosis and response to cytotoxic treatments. Its immunoexpression was assessed in 63 women diagnosed with invasive ductal carcinoma in a retrospective study. The results showed that high GSH expression was associated with tumors negative for the estrogen receptor (ER) (P<0.05), and GPX expression was associated with tumors negative for the progesterone receptor (PR) and patient mortality. Focusing on the 37 patients who received adjuvant chemotherapy/radiotherapy (Group I), high expression of GPX was associated with a high rate of patient mortality (P<0.05). The 19 patients who received only adjuvant chemotherapy (Group II) showed high expression of GSH in relation to metastasis (P<0.05). In addition, high levels of GPX expression were significantly associated with a shorter overall survival (P<0.05). To confirm this, the expression of precursor genes of GSH [glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS)] and the GPX gene was analyzed using quantitative PCR in cultured neoplastic mammary cells treated with doxorubicin. Doxorubicin treatment was able to eliminate tumor cells without alterations in the gene expression of GSS, but led to underexpression of the GCLC and GPX genes. Our results suggest that high levels of GPX may be related to the development of resistance to chemotherapy in these tumors, response to treatment and the clinical course of the breast cancer patients.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC