936 resultados para top quark,analisi multivariata,tmva,gluoni,quark,classificazione,reti neurali,machine learning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the propagation of perturbations in the energy density in a quark gluon plasma. Expanding the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations we obtain a nonlinear differential equation called the breaking wave equation. We solve it numerically and follow the time-evolution of initially localized pulses. We find that, quite unexpectedly, these pulses live for a very long time (compared to the reaction time-scales) before breaking. In practice, they mimick the Korteweg-de Vries solitons. Their existence may have some observable consequences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the (D) over barN interaction at low energies using a meson exchange model supplemented with a short-distance contribution from one-gluon exchange. The model is developed in close analogy to the meson-exchange KN interaction of the Julich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box diagrams involving (D) over bar *N , (D) over bar Delta, and (D) over bar*Delta intermediate states. The short-range part is assumed to receive additional contributions from genuine quark-gluon processes. The predicted cross-sections for (D) over barN for excess energies up to 150MeV are of the same order of magnitude as those for KN but with average values of around 20mb, roughly a factor two larger than for the latter system. It is found that the omega-exchange plays a very important role. Its interference pattern with the rho-exchange, which is basically fixed by the assumed SU(4) symmetry, clearly determines the qualitative features of the (D) over barN interaction - very similiar to what happens also for the KN system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Charmed (and bottom) hypernuclei are studied in the quark-meson coupling (QMC) model. This completes systematic studies of charmed (Lambda(c)(+), Sigma(c), Xi(c)), and Lambda(b) hypernuclei in the QMC model. Effects of the Pauli blocking due to the underlying quark structure of baryons, and the Sigma(c)N-Lambda(c)N channel coupling are phenomenologically taken into account at the hadronic level in the same way as those included for strange hypernuclei. Our results suggest that the Sigma(c)(++) and Xi(c)(+) hypernuclei are very unlikely to be formed. while the Lambda(c)(+), Xi(c)(0) and Lambda(b) hypernuclei are quite likely to be formed. For the Sigma(c)(+) hypernuclei, the formation probability is non-zero, though small. A detailed analysis is also made about the phenomenologically introduced Pauli blocking and channel coupling effects for the Sigma(c)(0) hypernuclei.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By considering a statistical model for the quark content of the nucleon, where the quark levels are generated by a Dirac equation with a harmonic scalar-plus-vector potential, we note that a good fit for the ratio between the structure functions of the neutron and proton, F-2(n)/F-2(p), can be obtained if different strengths are used for the effective confining potentials of the up and down quarks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of the transition pion form factor for processes gamma (*)gamma --> pi(0) and gamma (*)gamma (*) --> pi(0) at large values of space-like photon momenta is estimated within the nonlocal covariant quark-pion model. It is shown that, in general, the coefficient of the leading asymptotic term depends dynamically on the ratio of the constituent quark mass and the average virtuality of quarks in the vacuum and kinematically on the ratio of photon virtualities. The kinematic dependence of the transition form factor allows us to obtain the relation between the pion light-cone distribution amplitude and the quark-pion vertex function. The dynamic dependence indicates that the transition form factor gamma (*)gamma -->, pi(0) at high momentum transfers is very sensitive to the nonlocality size of nonperturbative fluctuations in the QCD vacuum. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider here a Coulomb gauge quark model which includes an explicit construct for a nontrivial vacuum structure in QCD at finite density. Non-perturbative renormalization of ultraviolet diverges is performed by adding counterterms. The equation of state for u and d quark matter at zero temperature is calculated in the Hartree-Fock approximation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The description of the short-range part of the nucleon forces in terms of quark degrees of freedom is tested by supplementing, to the short range quark cluster model, a long range mesonic force well founded theoretically.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We search for anomalous production of heavy-flavor quark jets in association with W bosons at the Fermilab Tevatron p(p) over bar Collider in final states in which the heavy-flavor quark content is enhanced by requiring at least one tagged jet in an event. Jets are tagged using one algorithm based on semileptonic decays of b/c hadrons, and another on their lifetimes. We compare e+jets (164 pb(-1)) and mu+jets (145 pb(-1)) channels collected with the D0 detector at root s = 1.96 TeV to expectations from the standard model and set upper limits on anomalous production of such events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the (1)F(3), as a very sensitive probe for the meson-exchange pan employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use local quark-hadron duality to calculate the nucleon structure function as seen by neutrino and muon beams. Our result indicates a possible signal of charge symmetry violation at the parton level in the very large x region.