961 resultados para three-dimensional


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates and discusses novel "three dimensional" silicon based junction isolation/termination solutions suitable for high density ultra-low-resistance Lateral Super-Junction structures. The proposed designs are both compact and effective in safely distributing the electrostatic potential away from the active device area. The designs are based on the utilization of existing layers in the device fabrication line, hence resulting in no extra complexity or cost increase. The study/demonstration is done through extensive experimental measurements and numerical simulations. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a wafer level three-dimensional simulation model of the Gate Commutated Thyristor (GCT) under inductive switching conditions. The simulations are validated by extensive experimental measurements. To the authors' knowledge such a complex simulation domain has not been used so far. This method allows the in depth study of large area devices such as GCTs, Gate Turn Off Thyristors (GTOs) and Phase Control Thyristors (PCTs). The model captures complex phenomena, such as current filamentation including subsequent failure, which allow us to predict the Maximum Controllable turn-off Current (MCC) and the Safe Operating Area (SOA) previously impossible using 2D distributed models. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The coupling between both models is performed by imposing no-slip boundary conditions on the surface of the cilia. The performance of the model is verified using various reference problems available in the literature. The model is used to simulate the fluid flow due to magnetically actuated artificial cilia. The results show that narrow and closely spaced cilia create the largest flow, that metachronal waves along the width of the cilia create a significant flow in the direction of the cilia width and that the recovery stroke in the case of the out-of-plane actuation of the cilia strongly depends on the cilia width. © 2012 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a fundamental experimental study of the flow structure around a single three-dimensional (3D) transonic shock control bump (SCB) mounted on a flat surface in a wind tunnel. Tests have been carried out with a Mach 1.3 normal shock wave located at a number of streamwise positions relative to the SCB. Details of the flow have been studied using the experimental techniques of schlieren photography, surface oil flow visualization, pressure sensitive paint, and laser Doppler anemometry. The results of the work build on the findings of previous researchers and shed new light on the flow physics of 3D SCBs. It is found that spanwise pressure gradients across the SCB ramp and the shape of the SCB sides affect the magnitude and uniformity of flow turning generated by the bump, which can impact on the spanwise propagation of the quasi-two-dimensional (2D) shock structure produced by a 3DSCB. At the bump crest, vortices can form if the pressure on the crest is significantly lower than at either side of the bump. The trajectories of these vortices, which are relatively weak, are strongly influenced by any spanwise pressure gradients across the bump tail. Asignificant difference between 2D and 3D SCBs highlighted by the study is the impact of spanwise pressure gradients on 3D SCB performance. The magnitude of these spanwise pressure gradients is determined largely by SCB geometry and shock position. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The desire to design more efficient transport aircraft has led to many different attempts to minimize drag. One approach is the use of three-dimensional shock control bumps, which have gained popularity in the research community as simple, efficient and robust devices capable of reducing the wave drag of transonic wings. This paper presents a computational study of the performance of three-dimensional bumps, relating key bump design variables to the overall wing aerodynamic performance. An efficient parameterization scheme allows three-dimensional bumps to be directly compared to two-dimensional designs, indicating that two-dimensional bumps are capable of greater design point aerodynamic performance in the transonic regime. An advantage of three-dimensional bumps lies in the production of streamwise vortices, such that, while two-dimensional bumps are capable of superior performance near the design point, three-dimensional bumps are capable of breakingup regions of separated flow at high Mach numbers, suggesting improvement in terms of buffet margin. A range of bump designs are developed that exhibit a tradeoff between design point aerodynamic efficiency and improvementinbuffet margin, indicating the potential for bespoke designs to be generated for different sections of a wing based on its flow characteristics. Copyright © 2012 by Jeremy Eastwood and Jerome Jarrett.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorine redistribution during partial solid-phase-epitaxial-regrowth at 650°C of a preamorphized Si substrate implanted by F was investigated by atom probe tomography (APT), transmission electron microscopy, and secondary ions mass spectrometry. Three-dimensional spatial distribution of F obtained by APT provides a direct observation of F-rich clusters with a diameter of less than 1.5 nm. Density variation compatible with cavities and F-rich molecular ions in correspondence of clusters are in accordance with cavities filled by SiF 4 molecules. Their presence only in crystalline Si while they are not revealed by statistical analysis in amorphous suggests that they form at the amorphous/crystal interface. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional spatial distribution of Al in the high-k metal gates of metal-oxide-semiconductor field-effect-transistors is measured by atom probe tomography. Chemical distribution is correlated with the transistor voltage threshold (VTH) shift generated by the introduction of a metallic Al layer in the metal gate. After a 1050 °C annealing, it is shown that a 2-Å thick Al layer completely diffuses into oxide layers, while a positive VTH shift is measured. On the contrary, for thicker Al layers, Al precipitation in the metal gate stack is observed and the VTH shift becomes negative. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atom probe tomography was used to study the redistribution of platinum and arsenic atoms after Ni(Pt) silicidation of As-doped polycrystalline Si. These measurements were performed on a field-effect transistor and compared with those obtained in unpatterned region submitted to the same process. These results suggest that Pt and As redistribution during silicide formation is only marginally influenced by the confinement in microelectronic devices. On the contrary, there is a clear difference with the redistribution reported in the literature for the blanket wafers. Selective etching used to remove the non-reacted Ni(Pt) film after the first rapid heat treatment may induce this difference. © 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: This work is concerned with the creation of three-dimensional (3D) extended-field-of-view ultrasound from a set of volumes acquired using a mechanically swept 3D probe. 3D volumes of ultrasound data can be registered by attaching a position sensor to the probe; this can be an inconvenience in a clinical setting. A position sensor can also cause some misalignment due to patient movement and respiratory motion. We propose a combination of three-degrees-of-freedom image registration and an unobtrusively integrated inertial sensor for measuring orientation. The aim of this research is to produce a reliable and portable ultrasound system that is able to register 3D volumes quickly, making it suitable for clinical use. METHOD: As part of a feasibility study we recruited 28 pregnant females attending for routine obstetric scans to undergo 3D extended-field-of-view ultrasound. A total of 49 data sets were recorded. Each registered data set was assessed for correct alignment of each volume by two independent observers. RESULTS: In 77-83% of the data sets more than four consecutive volumes registered. The successful registration relies on good overlap between volumes and is adversely affected by advancing gestational age and foetal movement. CONCLUSION: The development of reliable 3D extended-field-of-view ultrasound may help ultrasound practitioners to demonstrate the anatomical relation of pathology and provide a convenient way to store data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vortical wake structure produced by a three-dimensional shock control bump (SCB) is thought to be useful for controlling transonic buffet on airfoils. However, at present the vorticity produced is relatively weak and the production mechanism is not well understood. Using a combined experimental and computational approach, a preliminary investigation on the wake vorticity for different bump geometries has been carried out. The structure of the wake for on and off-design conditions are considered, and the effects on the downstream boundary layer demonstrated. Three main vortical structures are observed: a primary vortex pair, weak inter-bump vortices and shear flow in the lambda-shock region. The effect of pressure gradients on vortex strength is examined and it is found that spanwise pressure gradients on the front section of the bump are the most significant parameter influencing vortex strength. © 2013 by S.P. Colliss et al.