872 resultados para tensile properties
Resumo:
The aim of this research was to evaluate the plasticizing effect of natural surfactants lecithin or yucca extract from Yucca schidigera on gelatin-based films Films containing yucca extract showed higher tensile strength values (similar to 90-40 MPa) and moisture contents (similar to 15%) and less elongation (similar to 5%) and water vapor permeability values (similar to 0 22-009 g mm m(-2) h(-1) kPa(-1)) compared to films containing lecithin Soluble films (similar to 20-50%) were obtained when yucca extract was used while lecithin produced low soluble films (<10%) The opacity of the films (similar to 14 5-16 2%) was similar for both surfactants and the film surface morphologies were continuous and homogeneous X-ray diffraction indicated that the addition of surfactants produced amorphous films compared to gelatin-based films and FT-Infrared spectroscopy showed no evidence of association between the surfactants and the gelatin The plasticizing effect was not obtained after surfactants addition and casting technique (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The aim of this study was the production and characterization of gelatin-based films using hydrophobic plasticizers derived from citric acid and soy lecithin as emulsifier. The films were characterized as to their mechanic properties, permeability to water vapor, opacity, morphology and possible interactions using Fourier transform infrared spectroscopy. Tensile strength values (TS) varied from 36 to 103 MPa, how-ever, the increase in the concentration of plasticizers (acetyltributyl citrate and tributyl citrate) reduced TS by 57% and no relation was observed between plasticizer quantities and the elongation in the quantities tested. Permeability to water vapor varied between 0.17 and 0.34 (g mm/m(2) h kPa), slightly increasing with the increase in concentration of plasticizers. The effectiveness in the use of soy lecithin emulsifier in the homogenization between the compounds could be proven by microscopic observation using confocal laser microscopy. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol (R) 418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.
Resumo:
The objective of this work was to study the color, opacity, crystallinity, and the thermal and mechanical properties of films based on blends of gelatin and five different types of PVA [poly(vinyl alcohol)], with and without a plasticizer. The effect of the degree of hydrolysis of the PVA and the glycerol concentration on these properties was studied using colorimetry, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile mechanical tests. All films were essentially colorless (Delta E* < 5) and with low opacity ( Y <= 2.1). The DSC results were typical of partially crystalline materials, showing some phase separation characterized by a glass transition (T(g) = 40-55 degrees C), related to the amorphous part of the material, followed by two endothermic peaks related to the melting (T(m) = 100-160 and 170-210 degrees C) of the crystallites. The XRD results confirmed the crystallinity of the films. The film produced with PVA Celvol((R)) 418 (DH = 91.8%) showed the highest tensile resistance (tensile strength = 38 MPa), for films without plasticizer. However, with glycerol, the above-mentioned PVA and the PVA Celvol((R)) 504 produced the least resistant films of all the PVA types. But, although the mechanical properties of the blended films depended on the type of PVA used, there was no direct relationship between these properties and the degree of hydrolysis of the PVA. The properties studied were more closely dependent on the glycerol concentration. Finally, the mechanical resistance of the films presented a linear relationship with the glass transition temperature of the films. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Proteins contain hydrophilic groups, which can bind to water molecules through hydrogen bridges, resulting in water vapour adsorption. An increase in the degree of cross-linking can be a method to improve the cohesiveness force and functional properties of protein-based films. Thus, the objective of this work was to evaluate the effect of chemical treatment of gelatin with formaldehyde and glyoxal on the mechanical properties, water vapour permeability (WVP) and water vapour sorption characteristics of gelatin-based films. Films were produced using gelatin, with and without chemical treatment. The formaldehyde treatments caused a significant increase in the tensile strength and a reduction in the WVP of films. The Guggenheim-Anderson-De Boer and Halsey models could be used to model the sorption isotherms of films. It was observed that an increase in temperature produced a decrease in water sorption, and the chemical modifications did not affect the monolayer moisture content. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The aim of this work was to investigate the effect of glycerol contents on physical properties of cassava starch films. The films were prepared from film-forming solutions (FFS) with 2g cassava starch/100g water and 0, 15, 30 and 45g glycerol/100g starch, and were analysed to determine its mechanical properties by tensile tests, the glass-transition temperature (T-g) by differential scanning calorimetry (DSC) and the crystallinity by X-ray diffraction (XRD). The infrared spectra of the films were also recorded. The resistance values of the films decreased, while those of the elasticity increased with an increase in glycerol concentration due to the plasticizer effect of glycerol, which was also observed in DSC curves. The T-g of the films prepared decreased with the glycerol content. However, for samples with 30 and 45g glycerol/100g starch, two T-g curves were observed, probably due to a phase separation phenomenon. According to the XRD diffractograms, the films with 0 and 15gglycerol/100g starch presented an amorphous character, but some tendency to show crystalline peaks were observed for films with 30 and 45g glycerol/100g starch. The results obtained with Fourier transform infrared (FTIR) corroborated these observations. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
The aim of this study was to evaluate the effects of the addition of surfactants sodium stearoyl lactate (SSL) and sucrose ester (SE) on the functional properties of films produced with polysaccharides mixtures (methylcellulose/glucomannan/pectin in 1/4/1 ratio, respectively) and gelatin. The films were produced by the casting method and characterized for their water vapor permeability (WVP), mechanical (tensile strength and elongation to break point), morphological and optical properties. Films with low WVP were obtained with surfactants. Addition of SE to the films with polysaccharide/gelatin ratio of 90/10 showed improved mechanical properties. Films presented smooth surfaces with micro voids and lumpiness, depending on the surfactant tested. Surfactants increased the opacity of the films by a factor of 1-3%. All film properties were dependent on the surfactant affinity for the biopolymer matrix. SE presented more affinity for biopolymer matrix containing high polysaccharide proportion, and SSL presented more affinity for polymer matrix containing high gelatin proportion. The addition of surfactants decreased the water vapor permeability of the films, increasing their hydrophobic character.
Resumo:
The dieletric relaxation properties of thermosetting material nanocomposites based on spherosilicate nanoplatforms were studied from room temperature to 170 degrees C, varying the frequency from 10 to 1000 KHz. Permittivity (epsilon'), dielectric loss (epsilon ''), and activation energy (E-a) were calculated. The results of dielectric relaxation were confirmed by those of the final properties. The dielectric loss amplitude decreases with increasing ODPG content until about 70-73 wt % and slightly increases at higher ODPG content. This means that the increasing of the ODPG content in the composite samples decreases the number of pendants groups and/or increases crosslink densitv, causing decreased motion of organic tethers, and subsequently decreasing of the dipolar mobility. The results of apparent activation energy, fracture toughness and tensile modulus mechanical properties show the same profile with respect to ODPG content, in the sense that they exhibit maxima around 70 wt % ODPG. For the ODPG/MDA composites, this formulation of 70 wt % ODPG containing excess of amine is not composition where the highest crosslinked density is reached. This implies that the best mechanical properties and E-a are provided by some degree of chain flexibility. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Four aliphatic thermoplastic poly(ester-urethane)s (PEUs) with similar molecular weights but varying polyesters molecular weight (534-1488 g/mol) were prepared from polyester diols, obtained by melt condensation of Azelaic acid and 1,9-Nonanediol, and 1,7-heptamethylene di-isocyanate (HPMDI) all sourced from vegetable oil feedstock. The thermal, and mechanical properties, and crystal structure of PEUs were investigated using DSC, TGA, DMA, tensile analysis and WAXD. For sufficiently long polyester chain, WAXD data indicated no hydrogen bonds polyethylene (PE)-like crystalline packing and for short polyester chains, small crystal domains with significant H-bonded polyamide (PA)-like packing. Crystallinity decreased with decreasing polyester molecular weights. The polymorphism of PEUs and consequently their melting characteristics were found to be largely controlled by polyester segment length. TGA of the PEUs indicated improved thermal stability with decreasing polyester chain length, suggesting a stabilization effect by urethane groups. Mechanical properties investigated by DMA and tensile analysis were found to scale predictably with the overall crystallinity of PEUs. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)