874 resultados para system stability
Resumo:
This paper describes measurements of the performance of a research stage operating in isolation and as part of a multistage compressor. It is shown that the stall point and the stalled performance of the stage are properties of the system in which it operates rather than a property of the stage itself. The consequences of this for the estimation of the stall point for compressors and compression systems are discussed. The support that the measurements give to assumptions made by mathematical models which use the concept of an 'underlying axisymmetric' characteristic, are highlighted.
Resumo:
The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system. © 2008 IOP Publishing Ltd.
Resumo:
This paper explores the mechanism of triggering in a simple thermoacoustic system, the Rijke tube. It is demonstrated that additive stochastic perturbations can cause triggering before the linear stability limit of a thermoacoustic system. When triggering from low noise amplitudes, the system is seen to evolve to self-sustained oscillations via an unstable periodic solution of the governing equations. Practical stability is introduced as a measure of the stability of a linearly stable state when finite perturbations are present. The concept of a stochastic stability map is used to demonstrate the change in practical stability limits for a system with a subcritical bifurcation, once stochastic terms are included. The practical stability limits are found to be strongly dependent on the strength of noise.
Resumo:
In reciprocal mutualism systems, the exploitation events by exploiters might disrupt the reciprocal mutualism, wherein one exploiter species might even exclude other coexisting exploiter species over an evolutionary time frame. What remains unclear is how such a community is maintained. Niche partitioning, or spatial heterogeneity among the mutualists and exploiters, is generally believed to enable stability within a mutualistic system. However, our examination of a reciprocal mutualism between a fig species (Ficus racemosa) and its pollinator wasp (Ceratosolen fusciceps) shows that spatial niche partitioning does not sufficiently prevent exploiters from overexploiting the common resource (i.e., the female flowers), because of the considerable niche overlap between the mutualists and exploiters. In response to an exploiter, our experiment shows that the fig can (1) abort syconia-containing flowers that have been galled by the exploiter, Apocryptophagus testacea, which oviposits before the pollinators do; and (2) retain syconia-containing flowers galled by Apocryptophagus mayri, which oviposit later than pollinators. However, as a result of (2), there is decreased development of adult non-pollinators or pollinator species in syconia that have not been sufficiently pollinated, but not aborted. Such discriminative abortion of figs or reduction in offspring development of exploiters while rewarding cooperative individuals with higher offspring development by the fig will increase the fitness of cooperative pollinating wasps, but decrease the fitness of exploiters. The fig fig wasp interactions are diffusively coevolved, a case in which fig wasps diversify their genotype, phenotype, or behavior as a result of competition between wasps, while figs diverge their strategies to facilitate the evolution of cooperative fig waps or lessen the detrimental behavior by associated fig wasps. In habitats or syconia that suffer overexploitation, discriminative abortion of figs or reduction in the offspring development of exploiters in syconia that are not or not sufficiently pollinated will decrease exploiter fitness and perhaps even drive the population of exploiters to local extinction, enabling the evolution and maintenance of cooperative pollinators through the movement between habitats or syconia (i.e., the metapopulations).
Resumo:
Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.
Resumo:
Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.
Resumo:
This paper addresses the question relative to the role of sensory feedback in rhythmic tasks. We study the properties of a sinusoidally vibrating wedge-billiard as a model for 2-D bounce juggling. If this wedge is actuated with an harmonic sinusoidal input, it has been shown that some periodic orbits are exponentially stable. This paper explores an intuitive method to enlarge the parametric stability region of the simplest of these orbits. Accurate processing of timing is proven to be an important key to achieve frequency-locking in rhythmic tasks. © 2005 IEEE.
Resumo:
This note analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a Stable nonlinear system. It is shown that the instability of the zeros of the linear System can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static-state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
This paper analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
This paper presents some new criteria for uniform and nonuniform asymptotic stability of equilibria for time-variant differential equations and this within a Lyapunov approach. The stability criteria are formulated in terms of certain observability conditions with the output derived from the Lyapunov function. For some classes of systems, this system theoretic interpretation proves to be fruitful since - after establishing the invariance of observability under output injection - this enables us to check the stability criteria on a simpler system. This procedure is illustrated for some classical examples.
Resumo:
Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability. Subjects performed stabilization tasks while attached to a two dimensional robotic manipulandum which generated a virtual environment. Subjects were instructed that they could perform the stabilization task anywhere in the workspace, while the chosen postures were tracked as subjects repeated the task. In order to investigate the mechanisms behind the chosen limb postures, simulations of the neuro-mechanical system were performed. The results indicate that posture selection is performed to provide energy efficiency in the presence of force variability.
Resumo:
This paper reported the sorption, biodegradation and isomerization of hexachlorocyclohexane (HCH) in laboratory sediment/water system under aerobic and anaerobic conditions, respectively. The effect of organic nutrient addition to the sorption of HCH was also investigated. It indicates that HCH is highly adsorbed on sediments under both conditions. During the tests, the biodegradation and isomerization of HCH were dramatically speeded up after organic nutrient additions, especially in the case of the observation under aerobic condition. It was found, beta-HCH was the most persistent in the environment, that is due to the isomerization of alpha-HCH in a big amount to beta-HCH, besides its chemical stability. (C) 1997 Elsevier Science Ltd.
Resumo:
The photocurrent curves of reflection-mode GaAs photocathodes as a function of time, when were illuminated by white light with an intensity of 0, 33 and 100 Ix, respectively, were measured using a multi-information measurement system. The calculated lifetimes of cathodes are 320, 160 and 75 min, respectively, showing that the stability of cathodes degraded with the increase of light intensity. The lifetime of cathode, illuminated by white light with an intensity of 100 Ix, while no photocurrent was being drawn during the illumination, was 100 min. Through comparison, we found that the influence of illumination on cathodes stability is greater than that of photocurrent. The quantum-yield curves of cathodes as a functions of time, when illuminated by white light with an intensity of 33 Ix, were measured also. The measured results show that the shape of the yield curves changes with increasing illumination time due to the faster quantum-yield degradation rate of low energy photons. Based on the revised quantum-efficiency equations for the reflection-mode cathodes, the variation of yield curves are analyzed to be due to the intervalley diffusion of photoelectrons and the evolution of the surface potential barrier profile of the photocathodes during degradation process.
Resumo:
Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
For a class of nonlinear dynamical systems, the adaptive controllers are investigated using direction basis function (DBF) in this paper. Based on the criterion of Lyapunov' stability, DBF is designed which guarantees that the output of the controlled system asymptotically tracks the reference signals. Finally, the simulation shows the good tracking effectiveness of the adaptive controller.