942 resultados para substrate physics
Resumo:
Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy. and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
Thermal Physics of the Atmosphere offers a concise and thorough introduction on how basic thermodynamics naturally leads on to advanced topics in atmospheric physics. The book starts by covering the basics of thermodynamics and its applications in atmospheric science. The later chapters describe major applications, specific to more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation, and radiative processes. The book concludes with a discussion of non-equilibrium thermodynamics as applied to the atmosphere. This book provides a thorough introduction and invaluable grounding for specialised literature on the subject. Introduces a wide range of areas associated with atmospheric physics Starts from basic level thermal physics Ideally suited for readers with a general physics background Self-assessment questions included for each chapter Supplementary website to accompany the book
Resumo:
The geospace environment is controlled largely by events on the Sun, such as solar flares and coronal mass ejections, which generate significant geomagnetic and upper atmospheric disturbances. The study of this Sun-Earth system, which has become known as space weather, has both intrinsic scientific interest and practical applications. Adverse conditions in space can damage satellites and disrupt communications, navigation, and electric power grids, as well as endanger astronauts. The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the U.S. National Science Foundation (see http://www.bu.edu/cism/), is developing a suite of integrated physics-based computer models that describe the space environment from the Sun to the Earth for use in both research and operations [Hughes and Hudson, 2004, p. 1241]. To further this mission, advanced education and training programs sponsored by CISM encourage students to view space weather as a system that encompasses the Sun, the solar wind, the magnetosphere, and the ionosphere/thermosphere. This holds especially true for participants in the CISM space weather summer school [Simpson, 2004].
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.
Resumo:
The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.
Resumo:
Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases.
Resumo:
In a glasshouse experiment using potted strawberry plants (cv. Cambridge Favourite) as hosts, the effect of selected fungal antagonists grown on 25 or 50 g of mushroom compost containing autoclaved mycelia of Agaricus bisporus, or wheat bran was evaluated against Armillaria mellea. Another glasshouse experiment tested the effect of application time of the antagonists in relation to inoculations with the pathogen. A significant interaction was found between the antagonists, substrates and dose rates. All the plants treated with Chaetomium olivaceum isolate Co on 50 g wheat bran survived until the end of the experiment which lasted 482 days, while none of them survived when this antagonist was added to the roots of the plants on 25 g wheat bran or 25 or 50 g mushroom compost. Dactylium dendroides isolate SP had a similar effect, although with a lower host survival rate of 33.3%. Trichoderma hamatum isolate Tham 1 and T. harzianum isolate Th23 protected 33.3% of the plants when added on 50 g and none when added on 25 g of either substrate, while 66.7% of the plants treated with T. harzianum isolate Th2 on 25 g, or T viride isolate TO on 50 g wheat bran, survived. Application of the antagonists on mushroom compost initially resulted in development of more leaves and healthier plants, but this effect was not sustained. Eventually, plants treated with the antagonists on wheat bran had significantly more leaves and higher health scores. The plants treated with isolate Th2 and inoculated with Armillaria at the same time had a survival rate of 66.7% for the duration of the experiment (475 days), while none of them survived that long when the antagonist and pathogen were applied with an interval of 85 days in either sequence. C. olivaceum isolate Co showed a protective effect only, as 66.7% of the plants survived when they were treated with the antagonist 85 days before inoculation with the pathogen, while none of them survived when the antagonist and pathogen were applied together or the infection preceded protection.
Resumo:
Time-resolved studies of germylene, GeH2, and dimethygermylene, GeMe2, generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to try to obtain rate coefficients for their bimolecular reactions with dimethylgermane, Me2GeH2, in the gas-phase. GeH2 + Me2GeH2 was studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 296-553 K. Only slight pressure dependences were found (at 386, 447 and 553 K). RRKM modelling was carried out to fit these pressure dependences. The high pressure rate coefficients gave the Arrhenius parameters: log(A/cm(3) molecule(-1)s(-1)) = -10.99 +/- 0.07 and E-a = -(7.35 +/- 0.48) kJ mol(-1). No reaction could be found between GeMe2 + Me2GeH2 at any temperature up to 549 K, and upper limits of ca. 10(-14) cm(3) molecule(-1)s(-1) were set for the rate coefficients. A rate coefficient of (1.33 +/- 0.04) x 10(-11)cm(3) molecule(-1)s(-1) was also obtained for GeH2 + MeGeH3 at 296 K. No reaction was found between GeMe2 and MeGeH3. Rate coefficient comparisons showed, inter alia, that in the substrate germane Me-for-H substitution increased the magnitudes of rate coefficients significantly, while in the germylene Me-for-H substitution decreased the magnitudes of rate coefficients by at least four orders of magnitude. Quantum chemical calculations (G2(MP2,SVP)// B3LYP level) supported these findings and showed that the lack of reactivity of GeMe2 is caused by a positive energy barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper.
Resumo:
Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).
Resumo:
This study was an attempt to identify the epistemological roots of knowledge when students carry out hands-on experiments in physics. We found that, within the context of designing a solution to a stated problem, subjects constructed and ran thought experiments intertwined within the processes of conducting physical experiments. We show that the process of alternating between these two modes- empirically experimenting and experimenting in thought- leads towards a convergence on scientifically acceptable concepts. We call this process mutual projection. In the process of mutual projection, external representations were generated. Objects in the physical environment were represented in an imaginary world and these representations were associated with processes in the physical world. It is through this coupling that constituents of both the imaginary world and the physical world gain meaning. We further show that the external representations are rooted in sensory interaction and constitute a semi-symbolic pictorial communication system, a sort of primitive 'language', which is developed as the practical work continues. The constituents of this pictorial communication system are used in the thought experiments taking place in association with the empirical experimentation. The results of this study provide a model of physics learning during hands-on experimentation.