901 resultados para submarine pipeline
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
Projects that are exposed to uncertain environments can be effectively controlled with the application of risk analysis during the planning stage. The Analytic Hierarchy Process, a multiattribute decision-making technique, can be used to analyse and assess project risks which are objective or subjective in nature. Among other advantages, the process logically integrates the various elements in the planning process. The results from risk analysis and activity analysis are then used to develop a logical contingency allowance for the project through the application of probability theory. The contingency allowance is created in two parts: (a) a technical contingency, and (b) a management contingency. This provides a basis for decision making in a changing project environment. Effective control of the project is made possible by the limitation of the changes within the monetary contingency allowance for the work package concerned, and the utilization of the contingency through proper appropriation. The whole methodology is applied to a pipeline-laying project in India, and its effectiveness in project control is demonstrated.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format. © 2007 Optical Society of America.
Resumo:
Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.
Resumo:
The purpose of this interview study was to explore the experiences of Latino students, from their perspectives, as they journeyed through the educational pipeline, particularly the part focusing on the transfer experience from a 2-year college to a 4-year institution. This was accomplished by conducting in-depth interviews with 17 self-identified Latino men and women. All of the participants had attended Florida International University for at least 1 semester and had transferred from Miami Dade College. The participants varied in age, generational status, and cultural identity.^ The participants were asked to reflect on the external and internal influences that lead them to the 4-year institution. Tinto's (1993) model of student departure theory provided the theoretical framework for data collection and analysis. Based on the coding of the interviews, numerous themes emerged, including the role of the family, the impact of early education, the experiences of being Latino in Miami, the decisions to choose a college, the experience at the 2-year institution, the experience with the transfer process, and the obstacles and strategies the participants used for overcoming obstacles. These themes were furthered developed to determine which influences were most important for a successful journey through the educational pipeline. ^ The study found that viewing the pipeline via the students' perspectives juxtaposed with Tinto's (1993) model of student departure gave greater insight into the experiences of a population of students who have been underrepresented in higher education. The findings of this case study indicate that the transfer process for Latinos attending a Hispanic Serving Institution such as Florida International University, situated in a majority-minority city, is complex, with participants having to rely on peers and significant others for pertinent information and support. Several factors, including the importance of positive support networks and increased confidence nurtured by the 2-year institution, influenced the students' transfer to a 4-year institution. For professionals in the field, the findings of this study may lead to a broader understanding of the experiences of Latino students in the pipeline and, more importantly, assist college administrators and faculty in successfully guiding a population through a 4-year institution who first came via a 2-year institution. ^
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Abstract: This informative and interactive teaching symposium posits the Positive Peer Leadership Mentoring Program (PPLM) as an evidence-based wrap-around service for youth and families in Miami-Dade who are involved in the school-to-prison pipeline. Presenters first provide information to initiate the dialogic process of discerning and interpreting the school-to-prison pipeline, impacted by costs of incarceration for Black youth and families and the move toward effective mental health services in the juvenile justice system. Then, participants experience an interactive pedagogical mentoring format set forth in PPLM as the first step toward transforming the school-to-prison pipeline in their own classroom or other educational setting.
Resumo:
Shadows and illumination play an important role when generating a realistic scene in computer graphics. Most of the Augmented Reality (AR) systems track markers placed in a real scene and retrieve their position and orientation to serve as a frame of reference for added computer generated content, thereby producing an augmented scene. Realistic depiction of augmented content with coherent visual cues is a desired goal in many AR applications. However, rendering an augmented scene with realistic illumination is a complex task. Many existent approaches rely on a non automated pre-processing phase to retrieve illumination parameters from the scene. Other techniques rely on specific markers that contain light probes to perform environment lighting estimation. This study aims at designing a method to create AR applications with coherent illumination and shadows, using a textured cuboid marker, that does not require a training phase to provide lighting information. Such marker may be easily found in common environments: most of product packaging satisfies such characteristics. Thus, we propose a way to estimate a directional light configuration using multiple texture tracking to render AR scenes in a realistic fashion. We also propose a novel feature descriptor that is used to perform multiple texture tracking. Our descriptor is an extension of the binary descriptor, named discrete descriptor, and outperforms current state-of-the-art methods in speed, while maintaining their accuracy.