990 resultados para statistical reports
Resumo:
Numerous algorithms have been proposed recently for sparse signal recovery in Compressed Sensing (CS). In practice, the number of measurements can be very limited due to the nature of the problem and/or the underlying statistical distribution of the non-zero elements of the sparse signal may not be known a priori. It has been observed that the performance of any sparse signal recovery algorithm depends on these factors, which makes the selection of a suitable sparse recovery algorithm difficult. To take advantage in such situations, we propose to use a fusion framework using which we employ multiple sparse signal recovery algorithms and fuse their estimates to get a better estimate. Theoretical results justifying the performance improvement are shown. The efficacy of the proposed scheme is demonstrated by Monte Carlo simulations using synthetic sparse signals and ECG signals selected from MIT-BIH database.
Resumo:
Diketopyrrolopyrrole (DPP) containing copolymers have gained a lot of interest in organic optoelectronics with great potential in organic photovoltaics. In this work, DPP based statistical copolymers, with slightly different bandgap energies and a varying fraction of donor-acceptor ratio are investigated using monochromatic photocurrent spectroscopy and Fourier-transform photocurrent spectroscopy (FTPS). The statistical copolymer with a lower DPP fraction, when blended with a fullerene derivative, shows the signature of an inter charge transfer complex state in photocurrent spectroscopy. Furthermore, the absorption spectrum of the blended sample with a lower DPP fraction is seen to change as a function of an external bias, qualitatively similar to the quantum confined Stark effect, from where we estimate the exciton binding energy. The statistical copolymer with a higher DPP fraction shows no signal of the inter charge transfer states and yields a higher external quantum efficiency in a photovoltaic structure. In order to gain insight into the origin of the observed charge transfer transitions, we present theoretical studies using density-functional theory and time-dependent density-functional theory for the two pristine DPP based statistical monomers.
Resumo:
Diketopyrrolopyrrole (DPP) containing copolymers have gained a lot of interest in organic optoelectronics with great potential in organic photovoltaics. In this work, DPP based statistical copolymers, with slightly different bandgap energies and a varying fraction of donor-acceptor ratio are investigated using monochromatic photocurrent spectroscopy and Fourier-transform photocurrent spectroscopy (FTPS). The statistical copolymer with a lower DPP fraction, when blended with a fullerene derivative, shows the signature of an inter charge transfer complex state in photocurrent spectroscopy. Furthermore, the absorption spectrum of the blended sample with a lower DPP fraction is seen to change as a function of an external bias, qualitatively similar to the quantum confined Stark effect, from where we estimate the exciton binding energy. The statistical copolymer with a higher DPP fraction shows no signal of the inter charge transfer states and yields a higher external quantum efficiency in a photovoltaic structure. In order to gain insight into the origin of the observed charge transfer transitions, we present theoretical studies using density-functional theory and time-dependent density-functional theory for the two pristine DPP based statistical monomers.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001-10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.
Resumo:
Frequent episode discovery is one of the methods used for temporal pattern discovery in sequential data. An episode is a partially ordered set of nodes with each node associated with an event type. For more than a decade, algorithms existed for episode discovery only when the associated partial order is total (serial episode) or trivial (parallel episode). Recently, the literature has seen algorithms for discovering episodes with general partial orders. In frequent pattern mining, the threshold beyond which a pattern is inferred to be interesting is typically user-defined and arbitrary. One way of addressing this issue in the pattern mining literature has been based on the framework of statistical hypothesis testing. This paper presents a method of assessing statistical significance of episode patterns with general partial orders. A method is proposed to calculate thresholds, on the non-overlapped frequency, beyond which an episode pattern would be inferred to be statistically significant. The method is first explained for the case of injective episodes with general partial orders. An injective episode is one where event-types are not allowed to repeat. Later it is pointed out how the method can be extended to the class of all episodes. The significance threshold calculations for general partial order episodes proposed here also generalize the existing significance results for serial episodes. Through simulations studies, the usefulness of these statistical thresholds in pruning uninteresting patterns is illustrated. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs.
Resumo:
It is well known that wrist pulse signals contain information about the status of health of a person and hence diagnosis based on pulse signals has assumed great importance since long time. In this paper the efficacy of signal processing techniques in extracting useful information from wrist pulse signals has been demonstrated by using signals recorded under two different experimental conditions viz. before lunch condition and after lunch condition. We have used Pearson's product-moment correlation coefficient, which is an effective measure of phase synchronization, in making a statistical analysis of wrist pulse signals. Contour plots and box plots are used to illustrate various differences. Two-sample t-tests show that the correlations show statistically significant differences between the groups. Results show that the correlation coefficient is effective in distinguishing the changes taking place after having lunch. This paper demonstrates the ability of the wrist pulse signals in detecting changes occurring under two different conditions. The study assumes importance in view of limited literature available on the analysis of wrist pulse signals in the case of food intake and also in view of its potential health care applications.
Resumo:
In this paper, we consider the problem of power allocation in MIMO wiretap channel for secrecy in the presence of multiple eavesdroppers. Perfect knowledge of the destination channel state information (CSI) and only the statistical knowledge of the eavesdroppers CSI are assumed. We first consider the MIMO wiretap channel with Gaussian input. Using Jensen's inequality, we transform the secrecy rate max-min optimization problem to a single maximization problem. We use generalized singular value decomposition and transform the problem to a concave maximization problem which maximizes the sum secrecy rate of scalar wiretap channels subject to linear constraints on the transmit covariance matrix. We then consider the MIMO wiretap channel with finite-alphabet input. We show that the transmit covariance matrix obtained for the case of Gaussian input, when used in the MIMO wiretap channel with finite-alphabet input, can lead to zero secrecy rate at high transmit powers. We then propose a power allocation scheme with an additional power constraint which alleviates this secrecy rate loss problem, and gives non-zero secrecy rates at high transmit powers.
Resumo:
Diffusion-a measure of dynamics, and entropy-a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values. (C) 2015 AIP Publishing LLC.
Resumo:
Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.
Resumo:
Statistical Process Control (SPC) technique are well established across a wide range of industries. In particular, the plotting of key steady state variables with their statistical limit against time (Shewart charting) is a common approach for monitoring the normality of production. This paper aims with extending Shewart charting techniques to the quality monitoring of variables driven by uncertain dynamic processes, which has particular application in the process industries where it is desirable to monitor process variables on-line as well as final product. The robust approach to dynamic SPC is based on previous work on guaranteed cost filtering for linear systems and is intended to provide a basis for both a wide application of SPC monitoring and also motivate unstructured fault detection.
Resumo:
Resumen: El tema “trabajo infantil” es complejo de abordar debido a la falta de unicidad en su conceptualización y por la heterogeneidad y multiplicidad que lo caracteriza. No obstante, la diversidad de análisis (tanto descriptivos como estadísticos) en diferentes países sobre la cuestión, ha probado el gran avance en el sorteamiento de estas dificultades, como también brindado la base del diseño de planes de erradicación eficientes. Argentina ha sido una excepción a la regla. A pesar de la existencia de reportes e informes provenientes de organismos gubernamentales nacionales e internacionales se encuentra muy poco desarrollada la investigación basada en las herramientas econométricas. Por consiguiente, este análisis busca ampliar los conocimientos sobre el trabajo infantil en Argentina mediante la construcción de un modelo Logit binario que permita así examinar tanto la incidencia de los factores condicionantes más populares de la bibliografía internacional, así como la llamada “paradoja de la riqueza” planteada por Bhalotra y; por último la obtención de conclusiones sobre el impacto de las asistencias sociales en el trabajo infantil.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.