438 resultados para starvation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The S-like ribonucleases (RNases) RNS1 and RNS2 of Arabidopsis are members of the widespread T2 ribonuclease family, whose members also include the S-RNases, involved in gametophytic self-incompatibility in plants. Both RNS1 and RNS2 mRNAs have been shown previously to be induced by inorganic phosphate (Pi) starvation. In our study we examined this regulation at the protein level and determined the effects of diminishing RNS1 and RNS2 expression using antisense techniques. The Pi-starvation control of RNS1 and RNS2 was confirmed using antibodies specific for each protein. These specific antibodies also demonstrated that RNS1 is secreted, whereas RNS2 is intracellular. By introducing antisense constructs, mRNA accumulation was inhibited by up to 90% for RNS1 and up to 65% for RNS2. These plants contained abnormally high levels of anthocyanins, the production of which is often associated with several forms of stress, including Pi starvation. This effect demonstrates that diminishing the amounts of either RNS1 or RNS2 leads to effects that cannot be compensated for by the actions of other RNases, even though Arabidopsis contains a large number of different RNase activities. These results, together with the differential localization of the proteins, imply that RNS1 and RNS2 have distinct functions in the plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20+ is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20+ gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zinc-containing d-alanyl-d-alanine (d-Ala-d-Ala) dipeptidase VanX has been detected in both Gram-positive and Gram-negative bacteria, where it appears to have adapted to at least three distinct physiological roles. In pathogenic vancomycin-resistant enterococci, vanX is part of a five-gene cluster that is switched on to reprogram cell-wall biosynthesis to produce peptidoglycan chain precursors terminating in d-alanyl-d-lactate (d-Ala-d-lactate) rather than d-Ala-d-Ala. The modified peptidoglycan exhibits a 1,000-fold decrease in affinity for vancomycin, accounting for the observed phenotypic resistance. In the glycopeptide antibiotic producers Streptomyces toyocaensis and Amylocatopsis orientalis, a vanHAX operon may have coevolved with antibiotic biosynthesis genes to provide immunity by reprogramming cell-wall termini to d-Ala-d-lactate as antibiotic biosynthesis is initiated. In the Gram-negative bacterium Escherichia coli, which is never challenged by the glycopeptide antibiotics because they cannot penetrate the outer membrane permeability barrier, the vanX homologue (ddpX) is cotranscribed with a putative dipeptide transport system (ddpABCDF) in stationary phase by the transcription factor RpoS (σs). The combined action of DdpX and the permease would permit hydrolysis of d-Ala-d-Ala transported back into the cytoplasm from the periplasm as cell-wall crosslinks are refashioned. The d-Ala product could then be oxidized as an energy source for cell survival under starvation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an earlier paper we showed that in fully developed barley (Hordeum vulgare L.) root epidermal cells a decrease in cytosolic K+ was associated with an acidification of the cytosol (D.J. Walker, R.A. Leigh, A.J. Miller [1996] Proc Natl Acad Sci USA 93: 10510–10514). To show that these changes in cytosolic ion concentrations contributed to the decreased growth of K+-starved roots, we first measured whether similar changes occurred in cells of the growing zone. Triple-barreled ion-selective microelectrodes were used to measure cytosolic K+ activity and pH in cells 0.5 to 1.0 mm from the root tip. In plants growing from 7 to 21 d after germination under K+-replete conditions, the mean values did not change significantly, with values ranging from 80 to 84 mm for K+ and 7.3 to 7.4 for pH. However, in K+-starved plants (external [K+], 2 μm), the mean cytosolic K+ activity and pH had declined to 44 mm and 7.0, respectively, after 14 d. For whole roots, sap osmolality was always lower in K+-starved than in K+-replete plants, whereas elongation rate and dry matter accumulation were significantly decreased after 14 and 16 d of K+ starvation. The rate of protein synthesis in root tips did not change for K+-replete plants but declined significantly with age in K+-starved plants. Butyrate treatment decreased cytosolic pH and diminished the rate of protein synthesis in K+-replete roots. Procaine treatment of K+-starved roots gave an alkalinization of the cytosol and increased protein synthesis rate. These results show that changes in both cytosolic pH and K+ can be significant factors in inhibiting protein synthesis and root growth during K+ deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The light-saturated rate of photosynthetic O2 evolution in Chlamydomonas reinhardtii declined by approximately 75% on a per-cell basis after 4 d of P starvation or 1 d of S starvation. Quantitation of the partial reactions of photosynthetic electron transport demonstrated that the light-saturated rate of photosystem (PS) I activity was unaffected by P or S limitation, whereas light-saturated PSII activity was reduced by more than 50%. This decline in PSII activity correlated with a decline in both the maximal quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers (PSII centers capable of performing a charge separation but unable to reduce the plastoquinone pool). In addition to a decline in the light-saturated rate of O2 evolution, there was reduced efficiency of excitation energy transfer to the reaction centers of PSII (because of dissipation of absorbed light energy as heat and because of a transition to state 2). These findings establish a common suite of alterations in photosynthetic electron transport that results in decreased linear electron flow when C. reinhardtii is limited for either P or S. It was interesting that the decline in the maximum quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers were regulated specifically during S-limited growth by the SacI gene product, which was previously shown to be critical for the acclimation of C. reinhardtii to S limitation (J.P. Davies, F.H. Yildiz, and A.R. Grossman [1996] EMBO J 15: 2150–2159).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under stress conditions such as high light intensity or nutrient starvation, cells of the unicellular alga Dunaliella bardawil overproduce β-carotene, which is accumulated in the plastids in newly formed triacylglycerol droplets. We report here that the formation of these sequestering structures and β-carotene are interdependent. When the synthesis of triacylglycerol is blocked, the overproduction of β-carotene is also inhibited. During overproduction of β-carotene no up-regulation of phytoene synthase or phytoene desaturase is observed on the transcriptional or translational level, whereas at the same time acetyl-CoA carboxylase, the key regulatory enzyme of acyl lipid biosynthesis, is increased, at least in its enzymatic activity. We conclude that under normal conditions the carotenogenic pathway is not maximally active and may be appreciably stimulated in the presence of sequestering structures, creating a plastid-localized sink for the end product of the carotenoid biosynthetic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine if the ATP sulfurylase reaction is a regulatory step for the SO42−-assimilation pathway in plants, an Arabidopsis thaliana ATP sulfurylase cDNA, APS2, was fused to the 35S promoter of the cauliflower mosaic virus and introduced by Agrobacterium tumefaciens-mediated transformation into isolated Bright Yellow 2 tobacco (Nicotiana tabacum) cells. The ATP sulfurylase activity in transgenic cells was 8-fold that in control cells, and was correlated with the expression of a specific polypeptide revealed by western analysis using an anti-ATP sulfurylase antibody. The molecular mass of this polypeptide agreed with that for the overexpressed mature protein. ATP sulfurylase overexpression had no effect on [35S]SO42− influx or ATP sulfurylase activity regulation by S availability, except that ATP sulfurylase activity variations in response to S starvation in transgenic cells were 8 times higher than in the wild type. There were also no differences in cell growth or sensitivity to SeO42− (a toxic SO42− analog) between transgenic and wild-type cells. We propose that in Bright Yellow 2 tobacco cells, the ATP sulfurylase derepression by S deficiency may involve a posttranscriptional mechanism, and that the ATP sulfurylase abundance is not limiting for cell metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose (Glc) starvation of suspension-cultured carrot (Daucus carota L.) cells resulted in sequential activation of phospholipid catabolic enzymes. Among the assayed enzymes involved in the degradation, phospholipase D (PLD) and lipolytic acyl hydrolase were activated at the early part of starvation, and these activities were followed by β-oxidation and the glyoxylate cycle enzymes in order. The activity of PLD and lipolytic acyl hydrolase was further confirmed by in vivo-labeling experiments. It was demonstrated that Glc added to a medium containing starving cells inhibited the phospholipid catabolic activities, indicating that phospholipid catabolism is negatively regulated by Glc. There was a burst of ethylene production 6 h after starvation. Ethylene added exogeneously to a Glc-sufficient medium activated PLD, indicating that ethylene acts as an element in the signal transduction pathway leading from Glc depletion to PLD activation. Activation of lipid peroxidation, suggestive of cell death, occurred immediately after the decrease of the phospholipid degradation, suggesting that the observed phospholipid catabolic pathway is part of the metabolic strategies by which cells effectively survive under Glc starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus is a major nutrient acquired by roots via high-affinity inorganic phosphate (Pi) transporters. In this paper, we describe the tissue-specific regulation of tomato (Lycopersicon esculentum L.) Pi-transporter genes by Pi. The encoded peptides of the LePT1 and LePT2 genes belong to a family of 12 membrane-spanning domain proteins and show a high degree of sequence identity to known high-affinity Pi transporters. Both genes are highly expressed in roots, although there is some expression of LePT1 in leaves. Their expression is markedly induced by Pi starvation but not by starvation of nitrogen, potassium, or iron. The transcripts are primarily localized in root epidermis under Pi starvation. Accumulation of LePT1 message was also observed in palisade parenchyma cells of Pi-starved leaves. Our data suggest that the epidermally localized Pi transporters may play a significant role in acquiring the nutrient under natural conditions. Divided root-system studies support the hypothesis that signal(s) for the Pi-starvation response may arise internally because of the changes in cellular concentration of phosphorus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vacuolar protein aminopeptidase I (API) uses a novel cytoplasm-to-vacuole targeting (Cvt) pathway. Complementation analysis of yeast mutants defective for cytoplasm-to-vacuole protein targeting (cvt) and autophagy (apg) revealed seven overlapping complementation groups between these two sets of mutants. In addition, all 14 apg complementation groups are defective in the delivery of API to the vacuole. Similarly, the majority of nonoverlapping cvt complementation groups appear to be at least partially defective in autophagy. Kinetic analyses of protein delivery rates indicate that autophagic protein uptake is induced by nitrogen starvation, whereas Cvt is a constitutive biosynthetic pathway. However, the machinery governing Cvt is affected by nitrogen starvation as targeting defects resulting from API overexpression can be rescued by induction of autophagy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine slug Elysia chlorotica (Gould) forms an intracellular symbiosis with photosynthetically active chloroplasts from the chromophytic alga Vaucheria litorea (C. Agardh). This symbiotic association was characterized over a period of 8 months during which E. chlorotica was deprived of V. litorea but provided with light and CO2. The fine structure of the symbiotic chloroplasts remained intact in E. chlorotica even after 8 months of starvation as revealed by electron microscopy. Southern blot analysis of total DNA from E. chlorotica indicated that algal genes, i.e., rbcL, rbcS, psaB, psbA, and 16S rRNA are present in the animal. These genes are typically localized to the plastid genome in higher plants and algae except rbcS, which is nuclear-encoded in higher plants and green (chlorophyll a/b) algae. Our analysis suggests, however, that similar to the few other chromophytes (chlorophyll a/c) examined, rbcS is chloroplast encoded in V. litorea. Levels of psbA transcripts remained constant in E. chlorotica starved for 2 and 3 months and then gradually declined over the next 5 months corresponding with senescence of the animal in culture and in nature. The RNA synthesis inhibitor 6-methylpurine reduced the accumulation of psbA transcripts confirming active transcription. In contrast to psbA, levels of 16S rRNA transcripts remained constant throughout the starvation period. The levels of the photosystem II proteins, D1 and CP43, were high at 2 and 4 months of starvation and remained constant at a lower steady-state level after 6 months. In contrast, D2 protein levels, although high at 2 and 4 months, were very low at all other periods of starvation. At 8 months, de novo synthesis of several thylakoid membrane-enriched proteins, including D1, still occurred. To our knowledge, these results represent the first molecular evidence for active transcription and translation of algal chloroplast genes in an animal host and are discussed in relation to the endosymbiotic theory of eukaryote origins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cDNAs (AtPT1 and AtPT2) encoding plant phosphate transporters have been isolated from a library prepared with mRNA extracted from phosphate-starved Arabidopsis thaliana roots, The encoded polypeptides are 78% identical to each other and show high degree of amino acid sequence similarity with high-affinity phosphate transporters of Saccharomyces cerevisiae, Neurospora crassa, and the mycorrhizal fungus Glomus versiforme. The AtPT1 and AtPT2 polypeptides are integral membrane proteins predicted to contain 12 membrane-spanning domains separated into two groups of six by a large charged hydrophilic region. Upon expression, both AtPT1 and AtPT2 were able to complement the pho84 mutant phenotype of yeast strain NS219 lacking the high-affinity phosphate transport activity. AtPT1 and AtPT2 are representatives of two distinct, small gene families in A. thaliana. The transcripts of both genes are expressed in roots and are not detectable in leaves. The steady-state level of their mRNAs increases in response to phosphate starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirement for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-alpha- and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis.