983 resultados para sliding vector fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation and control of a cascade multilevel inverter, which has a high potential in future wind generation applications, are presented. The inverter is a combination of a high power, three level “bulk inverter” and a low power “conditioning inverter”. To minimize switching losses, the bulk inverter operates at a low frequency producing square wave outputs while high frequency conditioning inverter is used to suppress harmonic content produced by the bulk inverter output. This paper proposes an improved Space Vector Modulation (SVM) algorithm and a neutral point potential balancing technique for the inverter. Furthermore, a maximum power tracking controller for the Permanent Magnet Synchronous Generator (PMSG) is described in detail. The proposed SVM technique eliminates most of the computational burdens on the digital controller and renders a greater controllability under varying DC-link voltage conditions. The DC-link capacitor voltage balancing of both bulk and conditioning inverters is carried out using Redundant State Selection (RSS) method and is explained in detail. Experimental results are presented to verify the proposed modulation and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim A new method of penumbral analysis is implemented which allows an unambiguous determination of field size and penumbra size and quality for small fields and other non-standard fields. Both source occlusion and lateral electronic disequilibrium will affect the size and shape of cross-axis profile penumbrae; each is examined in detail. Method A new method of penumbral analysis is implemented where the square of the derivative of the cross-axis profile is plotted. The resultant graph displays two peaks in the place of the two penumbrae. This allows a strong visualisation of the quality of a field penumbra, as well as a mathematically consistent method of determining field size (distance between the two peak’s maxima), and penumbra (full-widthtenth-maximum of peak). Cross-axis profiles were simulated in a water phantom at a depth of 5 cm using Monte Carlo modelling, for field sizes between 5 and 30 mm. The field size and penumbra size of each field was calculated using the method above, as well as traditional definitions set out in IEC976. The effect of source occlusion and lateral electronic disequilibrium on the penumbrae was isolated by repeating the simulations removing electron transport and using an electron spot size of 0 mm, respectively. Results All field sizes calculated using the traditional and proposed methods agreed within 0.2 mm. The penumbra size measured using the proposed method was systematically 1.8 mm larger than the traditional method at all field sizes. The size of the source had a larger effect on the size of the penumbra than did lateral electronic disequilibrium, particularly at very small field sizes. Conclusion Traditional methods of calculating field size and penumbra are proved to be mathematically adequate for small fields. However, the field size definition proposed in this study would be more robust amongst other nonstandard fields, such as flattening filter free. Source occlusion plays a bigger role than lateral electronic disequilibrium in small field penumbra size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high-resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.

Relevância:

20.00% 20.00%

Publicador: