410 resultados para semiclassical quantization
Resumo:
This raster layer represents surface elevation and bathymetry data for the Boston Region, Massachusetts. It was created by merging portions of MassGIS Digital Elevation Model 1:5,000 (2005) data with NOAA Estuarine Bathymetric Digital Elevation Models (30 m.) (1998). DEM data was derived from the digital terrain models that were produced as part of the MassGIS 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has a floating point value, in meters, which represents its elevation above or below sea level.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference between the two resonances. We subsequently demonstrate how the phase and polarization of the rf radiation directly control the phase of the matter wave interference and provide a semiclassical interpretation of the results.
Resumo:
We analyze the efficiency of coherent population trapping (CPT) in a superposition of the ground states of three-level atoms under the influence of the decoherence process induced by a broadband thermal field. We show that in a single atom there is no perfect CPT when the atomic transitions are affected by the thermal field. The perfect CPT may occur when only one of the two atomic transitions is affected by the thermal field. In the case when both atomic transitions are affected by the thermal field, we demonstrate that regardless of the intensity of the thermal field the destructive effect on the CPT can be circumvented by the collective behavior of the atoms. An analytic expression was obtained for the populations of the upper atomic levels which can be considered as a measure of the level of thermal decoherence. The results show that the collective interaction between the atoms can significantly enhance the population trapping in that the population of the upper state decreases with an increased number of atoms. The physical origin of this feature is explained by the semiclassical dressed-atom model of the system. We introduce the concept of multiatom collective coherent population trapping by demonstrating the existence of collective (entangled) states whose storage capacity is larger than that of the equivalent states of independent atoms.
Resumo:
Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.
Resumo:
We consider a type of quantum electromechanical system, known as the shuttle system, first proposed by Gorelik [Phys. Rev. Lett. 80, 4526 (1998)]. We use a quantum master equation treatment and compare the semiclassical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunneling and shuttling regime can be measured directly in the spectrum of the noise. (c) 2006 American Institute of Physics.
Resumo:
In the absence of an external frame of reference-i.e., in background independent theories such as general relativity-physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original non-relational theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the collapse of the wave packet as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of spin networks introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.
Resumo:
The need for low bit-rate speech coding is the result of growing demand on the available radio bandwidth for mobile communications both for military purposes and for the public sector. To meet this growing demand it is required that the available bandwidth be utilized in the most economic way to accommodate more services. Two low bit-rate speech coders have been built and tested in this project. The two coders combine predictive coding with delta modulation, a property which enables them to achieve simultaneously the low bit-rate and good speech quality requirements. To enhance their efficiency, the predictor coefficients and the quantizer step size are updated periodically in each coder. This enables the coders to keep up with changes in the characteristics of the speech signal with time and with changes in the dynamic range of the speech waveform. However, the two coders differ in the method of updating their predictor coefficients. One updates the coefficients once every one hundred sampling periods and extracts the coefficients from input speech samples. This is known in this project as the Forward Adaptive Coder. Since the coefficients are extracted from input speech samples, these must be transmitted to the receiver to reconstruct the transmitted speech sample, thus adding to the transmission bit rate. The other updates its coefficients every sampling period, based on information of output data. This coder is known as the Backward Adaptive Coder. Results of subjective tests showed both coders to be reasonably robust to quantization noise. Both were graded quite good, with the Forward Adaptive performing slightly better, but with a slightly higher transmission bit rate for the same speech quality, than its Backward counterpart. The coders yielded acceptable speech quality of 9.6kbps for the Forward Adaptive and 8kbps for the Backward Adaptive.
Resumo:
The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase transitions as the length of the coding window is varied. We postulate, using the mammalian auditory system as an example, that the presence of a subpopulation structure within a neural population is consistent with an optimal neural code.
Resumo:
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Resumo:
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Resumo:
We have investigated how optimal coding for neural systems changes with the time available for decoding. Optimization was in terms of maximizing information transmission. We have estimated the parameters for Poisson neurons that optimize Shannon transinformation with the assumption of rate coding. We observed a hierarchy of phase transitions from binary coding, for small decoding times, toward discrete (M-ary) coding with two, three and more quantization levels for larger decoding times. We postulate that the presence of subpopulations with specific neural characteristics could be a signiture of an optimal population coding scheme and we use the mammalian auditory system as an example.
Resumo:
A new approach is proposed for the quantum mechanics of guiding center motion in strong magnetic field. This is achieved by use of the coherent state path integral for the coupled systems of the cyclotron and the guiding center motion. We are specifically concerned with the effective action for the guiding center degree, which can be used to get the Bohr- Sommerfeld quantization scheme. The quantization rule is similar to the one for the vortex motion as a dynamics of point particles.
Resumo:
We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.