928 resultados para scaling laws
Resumo:
IEECAS SKLLQG
Resumo:
We have studied the dependence of the thermal conductivity kappa on the strength of the interparticle potential lambda and the strength of the external potential beta in the Frenkel-Kontorova model. We found that the functional relation can be expressed in a scaling form, kappa(proportional to) lambda 3/2/beta(2 center dot). This result is first obtained by nonequilibrium molecular dynamics. It is then confirmed by two analytical methods, the self-consistent phonon theory and the self-consistent stochastic reservoirs method. The thermal conductivity kappa is therefore a decreasing functon of beta and an increasing function of lambda.
Resumo:
We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at root S-NN = 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage vertical bar-1.3, 1.3 vertical bar. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
以陕北绥德县韭园沟流域为试验样区 ,采用高精度 1∶ 1万 DEM所提取的坡度为准值 ,应用多层面复合分析和比较分析的方法 ,研究该地区 1∶ 5万 DEM提取地面坡度的误差特征与纠正方法。试验结果显示 ,所获得的不同空间尺度下 DEM所提取坡度值的转换图谱 ,可对 1∶ 5万 DEM计算的地面坡度统计值进行有效修正。该成果对于 DEM数据在水土保持领域若干应用标准的制定 ,提供了重要的理论依据与技术路线
Resumo:
Dynamic scaling and fractal behaviour of spinodal phase separation is studied in a binary polymer mixture of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). In the later stages of spinodal phase separation, a simple dynamic scaling law was found for the scattering function S(q,t):S(q,t) approximately q(m)-3S approximately (q/q(m)). The possibility of using fractal theory to describe the complex morphology of spinodal phase separation is discussed. In phase separation, morphology exhibits strong self-similarity. The two-dimensional image obtained by optical microscopy can be analysed within the framework of fractal concepts. The results give a fractal dimension of 1.64. This implies that the fractal structure may be the reason for the dynamic scaling behaviour of the structure function.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.
Resumo:
The binocular perception of shape and depth relations between objects can change considerably if the viewing direction is changed only by a small angle. We explored this effect psychophysically and found a strong depth reduction effect for large disparity gradients. The effect is found to be strongest for horizontally oriented stimuli, and stronger for line stimuli than for points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian approach which allows integration of information from different types of matching primitives weighted according to their robustness.
Resumo:
Trajectory Mapping "TM'' is a new scaling technique designed to recover the parameterizations, axes, and paths used to traverse a feature space. Unlike Multidimensional Scaling (MDS), there is no assumption that the space is homogenous or metric. Although some metric ordering information is obtained with TM, the main output is the feature parameterizations that partition the given domain of object samples into different categories. Following an introductory example, the technique is further illustrated using first a set of colors and then a collection of textures taken from Brodatz (1966).
Resumo:
Kohl, U. (2005). Ignorance is no Defence but is Inaccessibility? On the Accessibility of National Laws to Foreign Online Publishers. Information & Communities Technology Law, 14 (1), 25-41. RAE2008 Information & Communications Technology Law Volume 14, Issue 1, 2005 Special Issue: GATED COMMUNITIES
Resumo:
Bain, William, 'One Order, Two Laws: Recovering the 'Normative' in English School Theory', Review of International Studies, (2007) 33(4) pp.557-575 RAE2008
Resumo:
http://www.archive.org/details/constitutionlaws00ameriala
Resumo:
Recent empirical studies have shown that Internet topologies exhibit power laws of the form for the following relationships: (P1) outdegree of node (domain or router) versus rank; (P2) number of nodes versus outdegree; (P3) number of node pairs y = x^α within a neighborhood versus neighborhood size (in hops); and (P4) eigenvalues of the adjacency matrix versus rank. However, causes for the appearance of such power laws have not been convincingly given. In this paper, we examine four factors in the formation of Internet topologies. These factors are (F1) preferential connectivity of a new node to existing nodes; (F2) incremental growth of the network; (F3) distribution of nodes in space; and (F4) locality of edge connections. In synthetically generated network topologies, we study the relevance of each factor in causing the aforementioned power laws as well as other properties, namely diameter, average path length and clustering coefficient. Different kinds of network topologies are generated: (T1) topologies generated using our parametrized generator, we call BRITE; (T2) random topologies generated using the well-known Waxman model; (T3) Transit-Stub topologies generated using GT-ITM tool; and (T4) regular grid topologies. We observe that some generated topologies may not obey power laws P1 and P2. Thus, the existence of these power laws can be used to validate the accuracy of a given tool in generating representative Internet topologies. Power laws P3 and P4 were observed in nearly all considered topologies, but different topologies showed different values of the power exponent α. Thus, while the presence of power laws P3 and P4 do not give strong evidence for the representativeness of a generated topology, the value of α in P3 and P4 can be used as a litmus test for the representativeness of a generated topology. We also find that factors F1 and F2 are the key contributors in our study which provide the resemblance of our generated topologies to that of the Internet.
Resumo:
A difficulty in lung image registration is accounting for changes in the size of the lungs due to inspiration. We propose two methods for computing a uniform scale parameter for use in lung image registration that account for size change. A scaled rigid-body transformation allows analysis of corresponding lung CT scans taken at different times and can serve as a good low-order transformation to initialize non-rigid registration approaches. Two different features are used to compute the scale parameter. The first method uses lung surfaces. The second uses lung volumes. Both approaches are computationally inexpensive and improve the alignment of lung images over rigid registration. The two methods produce different scale parameters and may highlight different functional information about the lungs.