883 resultados para robotic welding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is made in cooperation with Wärtsilä and Sandvik. The main purpose of the thesis is to clarify the best suitable American standards for European standards used in Wärtsilä’s investigation checklist and to make wide and easily readable tables for Wärtsilä and their subcontractors. One of the most important issues is to make clear if the compared American standards are demanding enough for Wärtsilä’s needs. The research is done by comparing EN standards mentioned in Wärtsilä’s investigation checklist to corresponding ASME, AWS, ASNT and ASTM standards. The research shows that there is visible lack of requirements in American standards compared to European ones. Some areas of American standards are more demanding than European standards but in larger scale EN standards are much wider and more demanding than American standards. Because of these reasons, usage of European standards should be recommended for Wärtsilä’s subcontractors to ensure the quality and reliability of production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : Many individuals that had a stroke have motor impairments such as timing deficits that hinder their ability to complete daily activities like getting dressed. Robotic rehabilitation is an increasingly popular therapeutic avenue in order to improve motor recovery among this population. Yet, most studies have focused on improving the spatial aspect of movement (e.g. reaching), and not the temporal one (e.g. timing). Hence, the main aim of this study was to compare two types of robotic rehabilitation on the immediate improvement of timing accuracy: haptic guidance (HG), which consists of guiding the person to make the correct movement, and thus decreasing his or her movement errors, and error amplification (EA), which consists of increasing the person’s movement errors. The secondary objective consisted of exploring whether the side of the stroke lesion had an effect on timing accuracy following HG and EA training. Thirty-four persons that had a stroke (average age 67 ± 7 years) participated in a single training session of a timing-based task (simulated pinball-like task), where they had to activate a robot at the correct moment to successfully hit targets that were presented a random on a computer screen. Participants were randomly divided into two groups, receiving either HG or EA. During the same session, a baseline phase and a retention phase were given before and after each training, and these phases were compared in order to evaluate and compare the immediate impact of HG and EA on movement timing accuracy. The results showed that HG helped improve the immediate timing accuracy (p=0.03), but not EA (p=0.45). After comparing both trainings, HG was revealed to be superior to EA at improving timing (p=0.04). Furthermore, a significant correlation was found between the side of stroke lesion and the change in timing accuracy following EA (r[subscript pb]=0.7, p=0.001), but not HG (r[subscript pb]=0.18, p=0.24). In other words, a deterioration in timing accuracy was found for participants with a lesion in the left hemisphere that had trained with EA. On the other hand, for the participants having a right-sided stroke lesion, an improvement in timing accuracy was noted following EA. In sum, it seems that HG helps improve the immediate timing accuracy for individuals that had a stroke. Still, the side of the stroke lesion seems to play a part in the participants’ response to training. This remains to be further explored, in addition to the impact of providing more training sessions in order to assess any long-term benefits of HG or EA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft robots are robots made mostly or completely of soft, deformable, or compliant materials. As humanoid robotic technology takes on a wider range of applications, it has become apparent that they could replace humans in dangerous environments. Current attempts to create robotic hands for these environments are very difficult and costly to manufacture. Therefore, a robotic hand made with simplistic architecture and cheap fabrication techniques is needed. The goal of this thesis is to detail the design, fabrication, modeling, and testing of the SUR Hand. The SUR Hand is a soft, underactuated robotic hand designed to be cheaper and easier to manufacture than conventional hands. Yet, it maintains much of their dexterity and precision. This thesis will detail the design process for the soft pneumatic fingers, compliant palm, and flexible wrist. It will also discuss a semi-empirical model for finger design and the creation and validation of grasping models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tactile sensing is an important aspect of robotic systems, and enables safe, dexterous robot-environment interaction. The design and implementation of tactile sensors on robots has been a topic of research over the past 30 years, and current challenges include mechanically flexible “sensing skins”, high dynamic range (DR) sensing (i.e.: high force range and fine force resolution), multi-axis sensing, and integration between the sensors and robot. This dissertation focuses on addressing some of these challenges through a novel manufacturing process that incorporates conductive and dielectric elastomers in a reusable, multilength-scale mold, and new sensor designs for multi-axis sensing that improve force range without sacrificing resolution. A single taxel was integrated into a 1 degree of freedom robotic gripper for closed-loop slip detection. Manufacturing involved casting a composite silicone rubber, polydimethylsiloxane (PDMS) filled with conductive particles such as carbon nanotubes, into a mold to produce microscale flexible features on the order of 10s of microns. Molds were produced via microfabrication of silicon wafers, but were limited in sensing area and were costly. An improved technique was developed that produced molds of acrylic using a computer numerical controlled (CNC) milling machine. This maintained the ability to produce microscale features, and increased the sensing area while reducing costs. New sensing skins had features as small as 20 microns over an area as large as a human hand. Sensor architectures capable of sensing both shear and normal force sensing with high dynamic range were produced. Using this architecture, two sensing modalities were developed: a capacitive approach and a contact resistive approach. The capacitive approach demonstrated better dynamic range, while the contact resistive approach used simpler circuitry. Using the contact resistive approach, normal force range and resolution were 8,000 mN and 1,000 mN, respectively, and shear force range and resolution were 450 mN and 100 mN, respectively. Using the capacitive approach, normal force range and resolution were 10,000 mN and 100 mN, respectively, and shear force range and resolution were 1,500 mN and 50 mN, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laureate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first mechanical Automaton concept was found in a Chinese text written in the 3rd century BC, while Computer Vision was born in the late 1960s. Therefore, visual perception applied to machines (i.e. the Machine Vision) is a young and exciting alliance. When robots came in, the new field of Robotic Vision was born, and these terms began to be erroneously interchanged. In short, we can say that Machine Vision is an engineering domain, which concern the industrial use of Vision. The Robotic Vision, instead, is a research field that tries to incorporate robotics aspects in computer vision algorithms. Visual Servoing, for example, is one of the problems that cannot be solved by computer vision only. Accordingly, a large part of this work deals with boosting popular Computer Vision techniques by exploiting robotics: e.g. the use of kinematics to localize a vision sensor, mounted as the robot end-effector. The remainder of this work is dedicated to the counterparty, i.e. the use of computer vision to solve real robotic problems like grasping objects or navigate avoiding obstacles. Will be presented a brief survey about mapping data structures most widely used in robotics along with SkiMap, a novel sparse data structure created both for robotic mapping and as a general purpose 3D spatial index. Thus, several approaches to implement Object Detection and Manipulation, by exploiting the aforementioned mapping strategies, will be proposed, along with a completely new Machine Teaching facility in order to simply the training procedure of modern Deep Learning networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Despite there are already many studies on robotic surgery as minimally invasive approach for non-small cell lung cancer (NSCLC) patients, the use of this technique for stage III disease is still poorly described. These are the preliminary results of our prospective study on safety and effectiveness of robotic approach in patients with locally advanced NSCLC, in terms of postoperative complications and oncological outcome. Methods: Since 2016, we prospectively investigated, using standardized questionnaire and protocol, 21 consecutive patients with NSCLC stage IIIA-pN2 (diagnosed by EBUS-TBNA) who underwent lobectomy and radical lymph node dissection with robotic approach after induction treatment. Then, we performed a matched case-control study with 54 patients treated with open surgery during the same period of time, with similar age, clinical and pathological tumor stage. Results: The individual matched population was composed of 14 robot-assisted thoracic surgery and 14 patients who underwent open surgery. The median time range of resection was inferior in the open group compared to robotic lobectomy (148 vs 229 minutes; P=0.002). Lymph nodes resection and positivity were not statistically significantly different (p=0.66 and p=0.73 respectively). No difference was observed also for PFS (P=0.99) or OS (P=0.94). Conclusions: Our preliminary results demonstrated that the early outcomes and oncological results of N2-patients after robotic lobectomy were similar to open surgery. Considering the advantages of minimally invasive surgery, robotic assisted lobectomy should be a safe approach also to patients with local advanced disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PhD project that will be presented in this thesis is focused on the study and optimization of the production process for the manufacturing of electrical powertrain components in the automotive field using the laser beam welding process (LBW). The objective is to define, through experimental activities, an optimized process condition for applications in the electrical field that can be generalized, that is, which guarantees its reproducibility as the types of connections vary and which represents the basis for extending the method to future applications in e-mobility sector. The work developed along two lines of research, the convergence of which made it possible to create prototypes of battery modules based on different types of lithium-ion cells and stator windings for electric motors. On the one hand, the different welding configurations involving the production of batteries based on pouch cells and therefore the welding of aluminum and copper in dissimilar configuration were studied, while for the prismatic cells only one configuration was analyzed. On the other hand, the welding of pure copper hairpins with rectangular shape in edge joint configuration was studied for the production of stator windings. The experimental tests carried out have demonstrated the feasibility of using the LBW process for the production of electric powertrain components entirely designed and developed internally as the types of materials and welding configurations vary; the methodologies required for the characterization methods, necessary for the end-of-line tests, for the evaluation of the properties of the different joint configurations and components (battery and electric motor) were also defined with the aim of obtaining the best performance. The entire doctorate program was conducted in collaboration with Ferrari Auto S.p.A. and the direct industrial application of the issues addressed has been faced.