958 resultados para residency positions
Resumo:
Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.
Resumo:
Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell’s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.
Resumo:
Alignments of homologous genes typically reveal a great diversity of intron locations, far more than could fit comfortably in a single gene. Thus, a minority of these intron positions could be inherited from a single ancestral gene, but the larger share must be attributed to subsequent events of intron gain or intron “sliding” (movement from one position to another within a gene). Intron sliding has been argued from cases of discordant introns and from putative spatial clustering of intron positions. A list of 32 cases of discordant introns is presented here. Most of these cases are found to be artefactual. The spatial and phylogenetic distributions of intron positions from five published compilations of gene data, comprising 205 intron positions, have been examined systematically for evidence of intron sliding. The results suggest that sliding, if it occurs at all, has contributed little to the diversity of intron positions.
Resumo:
We analyze the three-dimensional structure of proteins by a computer program that finds regions of sequence that contain module boundaries, defining a module as a segment of polypeptide chain bounded in space by a specific given distance. The program defines a set of “linker regions” that have the property that if an intron were to be placed into each linker region, the protein would be dissected into a set of modules all less than the specified diameter. We test a set of 32 proteins, all of ancient origin, and a corresponding set of 570 intron positions, to ask if there is a statistically significant excess of intron positions within the linker regions. For 28-Å modules, a standard size used historically, we find such an excess, with P < 0.003. This correlation is neither due to a compositional or sequence bias in the linker regions nor to a surface bias in intron positions. Furthermore, a subset of 20 introns, which can be putatively identified as old, lies even more explicitly within the linker regions, with P < 0.0003. Thus, there is a strong correlation between intron positions and three-dimensional structural elements of ancient proteins as expected by the introns-early approach. We then study a range of module diameters and show that, as the diameter varies, significant peaks of correlation appear for module diameters centered at 21.7, 27.6, and 32.9 Å. These preferred module diameters roughly correspond to predicted exon sizes of 15, 22, and 30 residues. Thus, there are significant correlations between introns, modules, and a quantized pattern of the lengths of polypeptide chains, which is the prediction of the “Exon Theory of Genes.”
Resumo:
The Conserved Key Amino Acid Positions DataBase (CKAAPs DB) provides access to an analysis of structurally similar proteins with dissimilar sequences where key residues within a common fold are identified. The derivation and significance of CKAAPs starting from pairwise structure alignments is described fully in Reddy et al. [Reddy,B.V.B., Li,W.W., Shindyalov,I.N. and Bourne,P.E. (2000) Proteins, in press]. The CKAAPs identified from this theoretical analysis are provided to experimentalists and theoreticians for potential use in protein engineering and modeling. It has been suggested that CKAAPs may be crucial features for protein folding, structural stability and function. Over 170 substructures, as defined by the Combinatorial Extension (CE) database, which are found in approximately 3000 representative polypeptide chains have been analyzed and are available in the CKAAPs DB. CKAAPs DB also provides CKAAPs of the representative set of proteins derived from the CE and FSSP databases. Thus the database contains over 5000 representative polypeptide chains, covering all known structures in the PDB. A web interface to a relational database permits fast retrieval of structure-sequence alignments, CKAAPs and associated statistics. Users may query by PDB ID, protein name, function and Enzyme Classification number. Users may also submit protein alignments of their own to obtain CKAAPs. An interface to display CKAAPs on each structure from a web browser is also being implemented. CKAAPs DB is maintained by the San Diego Supercomputer Center and accessible at the URL http://ckaaps.sdsc.edu.