911 resultados para productivity losses


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The hypothesis that nutrient enrichment will affect bryozoan abundance was tested using two complementary investigations; a field-based method determining bryozoan abundance in 20 rivers of different nutrient concentrations by deploying statoblast (dormant propagule) traps and an experimental laboratory microcosm study measuring bryozoan growth and mortality. These two methods confirmed independently that increased nutrient concentrations in water promote increases in the biomass of freshwater bryozoans. 2. Statoblasts of the genus Plumatella were recorded in all rivers, regardless of nutrient concentrations, demonstrating that freshwater bryozoans are widespread. Concentrations of Plumatella statoblasts were high in rivers with high nutrient concentrations relative to those with low to moderate nutrient concentrations. Regression analyses indicated that phosphorus concentrations, in particular, significantly influenced statoblast concentrations. 3. Concentrations of Lophopus crystallinus statoblasts were also higher in sites characterised by high nutrient concentrations. Logistic regression analysis revealed that the presence of L. crystallinus statoblasts was significantly associated with decreasing altitude and increasing phosphorus concentrations. This apparently rare species was found in nine rivers (out of 20), seven of which were new sites for L. crystallinus. 4. Growth rates of Fredericella sultana in laboratory microcosms increased with increasing nutrient concentration and high mortality rates were associated with low nutrient concentrations. 5. Our results indicate that bryozoans respond to increasing nutrient concentrations by increased growth, resulting in higher biomasses in enriched waters. We also found that an important component of bryozoan diets can derive from food items lacking chlorophyll a. Finally, bryozoans may be used as independent proxies for inferring trophic conditions, a feature that may be especially valuable in reconstructing historical environments by assessing the abundance of statoblasts in sediment cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Productivity growth is conventionally measured by indices representing discreet approximations of the Divisia TFP index under the assumption that technological change is Hicks-neutral. When this assumption is violated, these indices are no longer meaningful because they conflate the effects of factor accumulation and technological change. We propose a way of adjusting the conventional TFP index that solves this problem. The method adopts a latent variable approach to the measurement of technical change biases that provides a simple means of correcting product and factor shares in the standard Tornqvist-Theil TFP index. An application to UK agriculture over the period 1953-2000 demonstrates that technical progress is strongly biased. The implications of that bias for productivity measurement are shown to be very large, with the conventional TFP index severely underestimating productivity growth. The result is explained primarily by the fact that technological change has favoured the rapidly accumulating factors against labour, the factor leaving the sector. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article assesses the extent to which sampling variation affects findings about Malmquist productivity change derived using data envelopment analysis (DEA), in the first stage by calculating productivity indices and in the second stage by investigating the farm-specific change in productivity. Confidence intervals for Malmquist indices are constructed using Simar and Wilson's (1999) bootstrapping procedure. The main contribution of this article is to account in the second stage for the information in the second stage provided by the first-stage bootstrap. The DEA SEs of the Malmquist indices given by bootstrapping are employed in an innovative heteroscedastic panel regression, using a maximum likelihood procedure. The application is to a sample of 250 Polish farms over the period 1996 to 2000. The confidence intervals' results suggest that the second half of 1990s for Polish farms was characterized not so much by productivity regress but rather by stagnation. As for the determinants of farm productivity change, we find that the integration of the DEA SEs in the second-stage regression is significant in explaining a proportion of the variance in the error term. Although our heteroscedastic regression results differ with those from the standard OLS, in terms of significance and sign, they are consistent with theory and previous research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.