936 resultados para probabilistic ranking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(ENG) IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) is a family of methods which use tightly coupled probabilistic and deterministic approaches to address respective sources of uncertainties, enabling Risk informed decision making in a consistent manner. The starting point of the IDPSA framework is that safety justification must be based on the coupling of deterministic (consequences) and probabilistic (frequency) considerations to address the mutual interactions between stochastic disturbances (e.g. failures of the equipment, human actions, stochastic physical phenomena) and deterministic response of the plant (i.e. transients). This paper gives a general overview of some IDPSA methods as well as some possible applications to PWR safety analyses (SPA)DPSA (Metodologías Integradas de Análisis Determinista-Probabilista de Seguridad) es un conjunto de métodos que utilizan métodos probabilistas y deterministas estrechamente acoplados para abordar las respectivas fuentes de incertidumbre, permitiendo la toma de decisiones Informada por el Riesgo de forma consistente. El punto de inicio del marco IDPSA es que la justificación de seguridad debe estar basada en el acoplamiento entre consideraciones deterministas (consecuencias) y probabilistas (frecuencia) para abordar la interacción mutua entre perturbaciones estocásticas (como por ejemplo fallos de los equipos, acciones humanas, fenómenos físicos estocásticos) y la respuesta determinista de la planta (como por ejemplo los transitorios). Este artículo da una visión general de algunos métodos IDSPA así como posibles aplicaciones al análisis de seguridad de los PWR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hock and Mumby (2015) describe an approach to quantify dispersal probabilities along paths in networks of habitat patches. This approach basically consists in determining the most probable (most reliable) path for movement between habitat patches by calculating the product of the dispersal probabilities in each link (step) along the paths in the network. Although the paper by Hock and Mumby (2015) has value and includes interesting analyses (see comments in section 7 below), the approach they describe is not new.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years, the computer vision community has shown great interest on depth-based applications thanks to the performance and flexibility of the new generation of RGB-D imagery. In this paper, we present an efficient background subtraction algorithm based on the fusion of multiple region-based classifiers that processes depth and color data provided by RGB-D cameras. Foreground objects are detected by combining a region-based foreground prediction (based on depth data) with different background models (based on a Mixture of Gaussian algorithm) providing color and depth descriptions of the scene at pixel and region level. The information given by these modules is fused in a mixture of experts fashion to improve the foreground detection accuracy. The main contributions of the paper are the region-based models of both background and foreground, built from the depth and color data. The obtained results using different database sequences demonstrate that the proposed approach leads to a higher detection accuracy with respect to existing state-of-the-art techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: