862 resultados para precursor concept
Resumo:
GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor. High-resolution X-ray diffraction (HRXRD) and secondary ion mass spectrometry (SIMS) are combined in determining the nitrogen contents in the samples. Room temperature photoluminescence (RTPL) measurement is also used in characterizing. The influence of different Ga precursors on GaNAs quality is investigated. Samples grown with triethylgallium (TEGa) have better qualities and less impurity contamination than those with trimethylgallium (TMGa). Nitrogen content of 5.688% is achieved with TEGa. The peak wavelength in RTPL measurement is measured to be 1278.5nm.
Resumo:
Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is simulated and realized for the first time. Our findings may be one of the answers to the Huh-Scriven paradox and expand our knowledge of dynamic wetting and electrowetting.
Resumo:
IEECAS SKLLQG
Resumo:
In this contribution, common vegetable oils are used as coordination solvents for synthesis of high quality CdSe nanocrystals. Various shaped nanocrystals (quantum dots, quantum rods, multipods, arc structure, etc.) can be produced free of alkylphosphonic acids. Shape evolution can be induced by three types of selenium precursors: ODE-Se, VO-Se and TOP-Se (ODE, 1-octadecene; VO, vegetable oil; TOP, trio-n-octylphosphine). The quantum yields of NCs are 15-40%. The full width at half-maximum (fwhm) of the photoluminescence spectra are 27 +/- 1 nm for quantum clots and 23 +/- 1 nm for quantum rods/multipods.
Resumo:
Four kinds of functional poly(gamma-benzyl-L-glutamate) (PBLG) copolymers containing chloro, azido, allyl or propargyl groups on the side chains were synthesized through ester exchange reactions of PBLG with functional alcohols without any protection and de-protection process. Hydrolysis of PBLG, which was found during the ester exchange reaction under low ratios of alcohol to the repeat units of PBLG, was thoroughly investigated, and could be successfully depressed by addition of certain amount of benzyl alcohol to the reaction system. Click chemistry reactions of the azidized or propargylated copolymers, thiol-ene reaction of the allyllated copolymer were taken successfully, indicating that the functional groups on the copolymers were still reactive.
Resumo:
Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
Resumo:
As-synthesized ZnO nanostructures with a bladed bundle-like architecture have been fabricated from a flower-like precursor ZnO (.) 0.33ZnBr(2) (.) 1.74H(2)O via a mechanism of dissolution - recrystallization. Experimental conditions, such as initial reactants and reaction time, are examined. The results show that no bladed bundle-like ZnO hierarchical nanostructures can be obtained by using the same molar amount of other zinc salts, such as ZnBr2, instead of the flower-like ZnO (.) 0.33ZnBr(2) (.) 1.74H(2)O precursor, and keeping other conditions unchanged. The products were characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The ZnO nanostructures are mainly composed of nanowires with a diameter around 40 - 50 nm and length up to 1.5 - 2.5 mu m. Meanwhile, ZnO nanoflakes with a thickness of about 4 - 5 nm attached to the surface of ZnO nanowires with a preferred radially aligned orientation. Furthermore, the photoluminescence (PL) measurements exhibited the unique white-light-emitting characteristic of hierarchical ZnO nanostructures. The emission spectra cover the whole visible region from 380 to 700 nm.
Resumo:
A novel polyimide precursor based on the dimethyl ester of 3,3',4,4'-biphenyltetracarboxylic acid, 4,4'-methylene dianiline and the monomethyl ester of 5-norbornene-2,3-dicarboxylic acid (BPDE/MDA/NE) was prepared by a modified polymerization of monomeric reactants (PMR) approach (MPMR). The composition of the precursor was quantitatively characterized by means of FTIR, HPLC and GC. The fractions of imide, amic ester and amic acid units in the precursor, typically prepared by refluxing in 1,4-dioxane for 2 h, were 33.7, 30.8 and 1.1 mol-%, respectively. The portion of free MDA was 3.34 wt.-% as determined by HPLC.