742 resultados para photometric stereo
Resumo:
We employ the recently installed near-infrared Multi-Conjugate Adaptive Optics demonstrator (MAD) to determine the basic properties of a newly identified, old and distant, Galactic open cluster (FSR 1415). The MAD facility remarkably approaches the diffraction limit, reaching a resolution of 0.07 arcsec (in K), that is also uniform in a field of similar to 1.8 arcmin in diameter. The MAD facility provides photometry that is 50 per cent complete at K similar to 19. This corresponds to about 2.5 mag below the cluster main-sequence turn-off. This high-quality data set allows us to derive an accurate heliocentric distance of 8.6 kpc, a metallicity close to solar and an age of similar to 2.5 Gyr. On the other hand, the deepness of the data allows us to reconstruct (completeness-corrected) mass functions (MFs) indicating a relatively massive cluster, with a flat core MF. The Very Large Telescope/MAD capabilities will therefore provide fundamental data for identifying/analysing other faint and distant open clusters in the Galaxy III and IV quadrants.
Resumo:
We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.
Resumo:
We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10(13.5) solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ACDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity > 80% for the redshift range up to similar to 1 and mass range down to similar to 10(13.5) solar masses.
Resumo:
The morphology of terebelliform polychaetes was investigated for a phylogenetic study focused on Terebellidae. For this study, specimens belonging to 147 taxa, preferably type material or specimens from type localities or areas close to them, were examined under stereo, light and scanning electron microscopes. The taxa examined were 1 Pectinariidae, 2 Ampharetidae, 2 Alvinellidae, 8 Trichobranchidae, and 134 Terebellidae, which included 8 Polycirrinae, 15 Thelepodinae, and 111 Terebellinae. A comparison of the morphology, including prostomium, peristomium, anterior segments and lobes, branchiae, glandular venter, nephridial and genital papillae, notopodia and notochaetae, neuropodia and neurochaetae, and posterior end, was made of all the currently recognized families of terebelliform polychaetes, with special emphasis on Terebellidae. A discussion of the characters useful to distinguish between genera is given. This character set will be used in a subsequent phylogenetic study (Nogueira & Hutchings in prep.)
Resumo:
Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.
Resumo:
The surface failure characteristics of different work roll materials, i.e. High Speed Steel, High Chromium Iron and Indefinite Chill Iron, used in the finishing stands of a hot strip mill have been investigated using stereo microscopy, 3D optical profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the surface failure mechanisms of work rolls for hot rolling are very complex, involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. Despite the differences in chemical composition and microstructure, the tribological response of the different work roll materials was found to be strongly dependent on the material microstructure and especially the presence and distribution of microstructural constituents, such as the different carbide phases and graphite (in the case of Indefinite Chill Iron). Cracking and chipping of the work roll surfaces, both having a negative impact on work roll wear, are strongly influenced by the presence of carbides, carbide networks and graphite in the work roll surface. Consequently, the amount of carbide forming elements as well as the manufacturing process must be controlled in order to obtain an optimised microstructure and a predictable wear rate.
Resumo:
Com o intuito de utilizar uma rede com protocolo IP para a implementação de malhas fechadas de controle, este trabalho propõe-se a realizar um estudo da operação de um sistema de controle dinâmico distribuído, comparando-o com a operação de um sistema de controle local convencional. Em geral, a decisão de projetar uma arquitetura de controle distribuído é feita baseada na simplicidade, na redução dos custos e confiabilidade; portanto, um diferencial bastante importante é a utilização da rede IP. O objetivo de uma rede de controle não é transmitir dados digitais, mas dados analógicos amostrados. Assim, métricas usuais em redes de computadores, como quantidade de dados e taxa de transferências, tornam-se secundárias em uma rede de controle. São propostas técnicas para tratar os pacotes que sofrem atrasos e recuperar o desempenho do sistema de controle através da rede IP. A chave para este método é realizar a estimação do conteúdo dos pacotes que sofrem atrasos com base no modelo dinâmico do sistema, mantendo o sistema com um nível adequado de desempenho. O sistema considerado é o controle de um manipulador antropomórfico com dois braços e uma cabeça de visão estéreo totalizando 18 juntas. Os resultados obtidos mostram que se pode recuperar boa parte do desempenho do sistema.
Resumo:
Humans can perceive three dimension, our world is three dimensional and it is becoming increasingly digital too. We have the need to capture and preserve our existence in digital means perhaps due to our own mortality. We have also the need to reproduce objects or create small identical objects to prototype, test or study them. Some objects have been lost through time and are only accessible through old photographs. With robust model generation from photographs we can use one of the biggest human data sets and reproduce real world objects digitally and physically with printers. What is the current state of development in three dimensional reconstruction through photographs both in the commercial world and in the open source world? And what tools are available for a developer to build his own reconstruction software? To answer these questions several pieces of software were tested, from full commercial software packages to open source small projects, including libraries aimed at computer vision. To bring to the real world the 3D models a 3D printer was built, tested and analyzed, its problems and weaknesses evaluated. Lastly using a computer vision library a small software with limited capabilities was developed.
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
In this study the main question investigated was the number and size of both binucleate and mononucleate superior cervical ganglion (SCG) neurons and, whether post-natal development would affect these parameters. Twenty left SCGs from 20 male pacas were used. Four different ages were investigated, that is newborn (4 days), young (45 days), adult (2 years), and aged animals (7 years). By using design-based stereo-logical methods, that is the Cavalieri principle and a physical disector combined with serial sectioning, the total volume of ganglion and total number of mononucleate and binucleate neurons were estimated. Furthermore, the mean perikaryal (somal) volume of mononucleate and binucleate neurons was estimated using the vertical nucleator. The main findings of this study were a 154% increase in the SCG volume, a 95% increase in the total number of mononucleate SCG neurons and a 50% increase in the total volume of SCG neurons. In conclusion, apart from neuron number, different adaptive mechanisms may coexist in the autonomic nervous system to guarantee a functional homeostasis during ageing, which is not always associated with neuron losses. Anat Rec, 292:966-975, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
In the recovering process of oil, rock heterogeneity has a huge impact on how fluids move in the field, defining how much oil can be recovered. In order to study this variability, percolation theory, which describes phenomena involving geometry and connectivity are the bases, is a very useful model. Result of percolation is tridimensional data and have no physical meaning until visualized in form of images or animations. Although a lot of powerful and sophisticated visualization tools have been developed, they focus on generation of planar 2D images. In order to interpret data as they would be in the real world, virtual reality techniques using stereo images could be used. In this work we propose an interactive and helpful tool, named ZSweepVR, based on virtual reality techniques that allows a better comprehension of volumetric data generated by simulation of dynamic percolation. The developed system has the ability to render images using two different techniques: surface rendering and volume rendering. Surface rendering is accomplished by OpenGL directives and volume rendering is accomplished by the Zsweep direct volume rendering engine. In the case of volumetric rendering, we implemented an algorithm to generate stereo images. We also propose enhancements in the original percolation algorithm in order to get a better performance. We applied our developed tools to a mature field database, obtaining satisfactory results. The use of stereoscopic and volumetric images brought valuable contributions for the interpretation and clustering formation analysis in percolation, what certainly could lead to better decisions about the exploration and recovery process in oil fields
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
This work introduces a new method for environment mapping with three-dimensional information from visual information for robotic accurate navigation. Many approaches of 3D mapping using occupancy grid typically requires high computacional effort to both build and store the map. We introduce an 2.5-D occupancy-elevation grid mapping, which is a discrete mapping approach, where each cell stores the occupancy probability, the height of the terrain at current place in the environment and the variance of this height. This 2.5-dimensional representation allows that a mobile robot to know whether a place in the environment is occupied by an obstacle and the height of this obstacle, thus, it can decide if is possible to traverse the obstacle. Sensorial informations necessary to construct the map is provided by a stereo vision system, which has been modeled with a robust probabilistic approach, considering the noise present in the stereo processing. The resulting maps favors the execution of tasks like decision making in the autonomous navigation, exploration, localization and path planning. Experiments carried out with a real mobile robots demonstrates that this proposed approach yields useful maps for robot autonomous navigation
Resumo:
This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment
Resumo:
We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time