952 resultados para pasture deferment


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urbanization is becoming increasingly important in terms of climate change and ecosystem functionality worldwide. We are only beginning to understand how the processes of urbanization influence ecosystem dynamics and how peri-urban environments contribute to climate change. Brisbane in South East Queensland (SEQ) currently has the most extensive urban sprawl of all Australian cities. This leads to substantial land use changes in urban and peri-urban environments and the subsequent gaseous emissions from soils are to date neglected for IPCC climate change estimations. This research examines how land use change effects methane (CH4) and nitrous oxide (N2O) fluxes from peri-urban soils and consequently influences the Global Warming Potential (GWP) of rural ecosystems in agricultural use undergoing urbanization. Therefore, manual and fully automated static chamber measurements determined soil gas fluxes over a full year and an intensive sampling campaign of 80 days after land use change. Turf grass, as the major peri-urban land cover, increased the GWP by 415 kg CO2-e ha 1 over the first 80 days after conversion from a well-established pasture. This results principally from increased daily average N2O emissions of 0.5 g N2O ha-1 d-1 from the pasture to 18.3 g N2O ha-1 d-1 from the turf grass due to fertilizer application during conversion. Compared to the native dry sclerophyll eucalypt forest, turf grass establishment increases the GWP by another 30 kg CO2-e ha 1. The results presented in this study clearly indicate the substantial impact of urbanization on soil-atmosphere gas exchange in form of non-CO2 greenhouse gas emissions particularly after turf grass establishment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sown pasture rundown and declining soil fertility for forage crops are too serious to ignore with losses in beef production of up to 50% across Queensland. The feasibility of using strategic applications of nitrogen (N) fertiliser to address these losses was assessed by analysing a series of scenarios using data drawn from published studies, local fertiliser trials and expert opinion. While N fertilser can dramatically increase productivity (growth, feed quality and beef production gains of over 200% in some scenarios), the estimated economic benefits, derived from paddock level enterprise budgets for a fattening operation, were much more modest. In the best-performing sown grass scenarios, average gross margins were doubled or tripled at the assumed fertiliser response rates, and internal rates of return of up to 11% were achieved. Using fertiliser on forage sorghum or oats was a much less attractive option and, under the paddock level analysis and assumptions used, forages struggled to be profitable even on fertile sites with no fertiliser input. The economics of nitrogen fertilising on grass pasture were sensitive to the assumed response rates in both pasture growth and liveweight gain. Consequently, targeted research is proposed to re-assess the responses used in this analysis, which are largely based on research 25-40 years ago when soils were generally more fertile and pastures less rundown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brigalow Belt bioregion of southern and central Queensland supports a large percentage of northern Australia's sown pastures and beef herd. The Brigalow soils were widely thought to have adequate phosphorus (P) for cropping, sown pastures and grazing animals, which has led to almost no use of P fertiliser on sown pastures. The majority of pastures established in the region were sown with tropical grasses only (i.e. no legumes were sown). Under grass-only pastures, nitrogen (N) mineralisation rates decline with time since establishment as N is 'tied-up' in soil organic matter. This process leads to a significant decline in pasture and animal productivity and is commonly called 'pasture rundown'. Incorporating pasture legumes has been identified as the best long-term solution to improve the productivity of rundown sown grass pastures. Pasture legumes require adequate P to grow well and fix large amounts of N to increase the productivity of rundown sown grass pastures. Producers and farm advisors have traditionally thought that P fertiliser is not cost-effective for legume-based improved pastures growing on inland areas of Queensland despite there being little, if any, data on production responses or their economic outcomes. Recent studies show large and increasing areas of low plant available soil P and large responses by pasture legumes to P fertiliser on Brigalow soils. The economic analysis in this scoping study indicates potential returns of 9–15% on extra funds invested from the application of P fertiliser, when establishing legumes into grass pastures on low P soils (i.e. lower than the critical P requirement of the legume grown). Higher returns of 12–24% may be possible when adding P fertiliser to already established grass/legume pastures on such soils. As these results suggest potential for significant returns from applying P fertiliser on legume pastures, it is recommended that research be conducted to better quantify the impacts of P fertiliser on productivity and profit. Research priorities include: quantifying the animal production and economic impact of fertilising legume-based pastures in the sub-tropics for currently used legumes; quantifying the comparative P requirements and responses of available legume varieties; understanding clay soil responses to applied P fertiliser; testing the P status of herds grazing in the Brigalow Belt; and quantifying the extent of other nutrient deficiencies (e.g. sulphur and potassium) for legume based pastures. Development and extension activities are required to demonstrate the commercial impacts of applying P fertiliser to legume based pastures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low level strategic supplements constitute one of the few options for northern beef producers to increase breeder productivity and profitability. Objectives of the project were to improve the cost-effectiveness of using such supplements and to improve supplement delivery systems. Urea-based supplements fed during the dry season can substantially reduce breeder liveweight loss and increase fertility during severe dry seasons. Also when fed during the late wet season these supplements increased breeder body liveweight and increased fertility of breeders in low body condition. Intake of dry lick supplements fed free choice is apparently determined primarily by the palatability of supplements relative to pasture, and training of cattle appears to be of limited importance. Siting of supplementation points has some effect on supplement intake, but little effect on grazing behaviour. Economic analysis of supplementation (urea, phosphorus or molasses) and weaning strategies was based on the relative efficacy of these strategies to maintain breeder body condition late in the dry season. Adequate body condition of breeders at this time of the year is needed to avoid mortality from under-nutrition and achieve satisfactory fertility of breeders during the following wet season. Supplements were highly cost-effective when they reduced mortality, but economic returns were generally low if the only benefit was increased fertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinee apple (Ziziphus mauritiana Lam.) is a thorny tree that is invading tropical woodlands of northern Australia. The present study reports three experiments related to the seed dynamics of chinee apple. Experiment 1 and 2 investigated persistence of seed lots under different soil types (clay and river loam), levels of pasture cover (present or absent) and burial depths (0, 2.5, 10 and 20 cm). Experiment 3 determined the germination response of chinee apple seeds to a range of alternating day/night temperatures (11/6°C up to 52/40°C). In the longevity experiments (Expts 1 and 2), burial depth, soil type and burial duration significantly affected viability. Burial depth had the greatest influence, with surface located seeds generally persisting for longer than those buried below ground. Even so, no viable seeds remained after 18 and 24 months in the first and second experiment, respectively. In Expt 3 seeds of chinee apple germinated under a wide range of alternating day/night temperatures ranging from 16/12°C to 47 /36°C. Optimal germination (77%) occurred at 33/27°C and no seeds germinated at either of the lowest (11/6°C) or highest (52/40°C) temperature regimes tested. These findings indicated that chinee apple has the potential to expand its current distribution to cooler areas of Australia. Control practices need to be undertaken for at least two years to exhaust the seed bank.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land-applied manures produce nitrous oxide (N2O), a greenhouse gas (GHG). Land application can also result in ammonia (NH3) volatilisation, leading to indirect N2O emissions. Here, we summarise a glasshouse investigation into the potential for vermiculite, a clay with a high cation exchange capacity, to decrease N2O emissions from livestock manures (beef, pig, broiler, layer), as well as urea, applied to soils. Our hypothesis is that clays adsorb ammonium, thereby suppressing NH3 volatilisation and slowing N2O emission processes. We previously demonstrated the ability of clays to decrease emissions at the laboratory scale. In this glasshouse work, manure and urea application rates varied between 50 and 150 kg nitrogen (N)/ha. Clay : manure ratios ranged from 1 : 10 to 1 : 1 (dry weight basis). In the 1-year trial, the above-mentioned N sources were incorporated with vermiculite in 1 L pots containing Sodosol and Ferrosol growing a model pasture (Pennisetum clandestinum or kikuyu grass). Gas emissions were measured periodically by placing the pots in gas-tight bags connected to real-time continuous gas analysers. The vermiculite achieved significant (P ≤ 0.05) and substantial decreases in N2O emissions across all N sources (70% on average). We are currently testing the technology at the field scale; which is showing promising emission decreases (~50%) as well as increases (~20%) in dry matter yields. This technology clearly has merit as an effective GHG mitigation strategy, with potential associated agronomic benefits, although it needs to be verified by a cost–benefit analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and {N2O} emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal {N2O} emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily {N2O} fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize {N2O} emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce {N2O} emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative sources of N are required to bolster subtropical cereal production without increasing N2O emissions from these agro-ecosystems. The reintroduction of legumes in cereal cropping systems is a possible strategy to reduce synthetic N inputs but elevated N2O losses have sometimes been observed after the incorporation of legume residues. However, the magnitude of these losses is highly dependent on local conditions and very little data are available for subtropical regions. The aim of this study was to assess whether, under subtropical conditions, the N mineralised from legume residues can substantially decrease the synthetic N input required by the subsequent cereal crop and reduce overall N2O emissions during the cereal cropping phase. Using a fully automated measuring system, N2O emissions were monitored in a cereal crop (sorghum) following a legume pasture and compared to the same crop in rotation with a grass pasture. Each crop rotation included a nil and a fertilised treatment to assess the N availability of the residues. The incorporation of legumes provided enough readily available N to effectively support crop development but the low labile C left by these residues is likely to have limited denitrification and therefore N2O emissions. As a result, N2O emissions intensities (kg N2O-N yield−1 ha−1) were considerably lower in the legume histories than in the grass. Overall, these findings indicate that the C supplied by the crop residue can be more important than the soil NO3− content in stimulating denitrification and that introducing a legume pasture in a subtropical cereal cropping system is a sustainable practice from both environmental and agronomic perspectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Farmland bird species have been declining in Europe. Many declines have coincided with general intensification of farming practices. In Finland, replacement of mixed farming, including rotational pastures, with specialized cultivation has been one of the most drastic changes from the 1960s to the 1990s. This kind of habitat deterioration limits the persistence of populations, as has been previously indicated from local populations. Integrated population monitoring, which gathers species-specific information of population size and demography, can be used to assess the response of a population to environment changes also at a large spatial scale. I targeted my analysis at the Finnish starling (Sturnus vulgaris). Starlings are common breeders in farmland habitats, but severe declines of local populations have been reported from Finland in the 1970s and 1980s and later from other parts of Europe. Habitat deterioration (replacement of pasture and grassland habitats with specialized cultivation areas) limits reproductive success of the species. I analysed regional population data in order to exemplify the importance of agricultural change to bird population dynamics. I used nestling ringing and nest-card data from 1951 to 2005 in order to quantify population trends and per capita reproductive success within several geographical regions (south/north and west/east aspects). I used matrix modelling, acknowledging age-specific survival and fecundity parameters and density-dependence, to model population dynamics. Finnish starlings declined by 80% from the end of the 1960s up to the end of the 1980s. The observed patterns and the model indicated that the population decline was due to the decline of the carrying capacity of farmland habitats. The decline was most severe in north Finland where populations largely become extinct. However, habitat deterioration was most severe in the southern breeding areas. The deteriorations in habitat quality decreased reproduction, which finally caused the decline. I suggest that poorly-productive northern populations have been partly maintained by immigration from the highly-productive southern populations. As the southern populations declined, ceasing emigration caused the population extinction in north. This phenomenon was explained with source sink population dynamics, which I structured and verified on the basis of a spatially explicit simulation model. I found that southern Finnish starling population exhibits ten-year cyclic regularity, a phenomenon that can be explained with delayed density-dependence in reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane has garnered much interest for its potential as a viable renewable energy crop. While the use of sugar juice for ethanol production has been in practice for years, a new focus on using the fibrous co-product known as bagasse for producing renewable fuels and bio-based chemicals is growing in interest. The success of these efforts, and the development of new varieties of energy canes, could greatly increase the use of sugarcane and sugarcane biomass for fuels while enhancing industry sustainability and competitiveness. Sugarcane-Based Biofuels and Bioproducts examines the development of a suite of established and developing biofuels and other renewable products derived from sugarcane and sugarcane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This text brings together essential information regarding the development and utilization of new fuels and bioproducts derived from sugarcane. Authored by experts in the field, Sugarcane-Based Biofuels and Bioproducts is an invaluable resource for researchers studying biofuels, sugarcane, and plant biotechnology as well as sugar and biofuels industry personnel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In each stage of product development, we need to take decisions, by evaluating multiple product alternatives based on multiple criteria. Classical evaluation methods like weighted objectives method assumes certainty about information available during product development. However, designers often must evaluate under uncertainty. Often the likely performance, cost or environmental impacts of a product proposal could be estimated only with certain confidence, which may vary from one proposal to another. In such situations, the classical approaches to evaluation can give misleading results. There is a need for a method that can aid in decision making by supporting quantitative comparison of alternatives to identify the most promising alternative, under uncertain information about the alternatives. A method called confidence weighted objectives method is developed to compare the whole life cycle of product proposals using multiple evaluation criteria under various levels of uncertainty with non crisp values. It estimates the overall worth of proposal and confidence on the estimate, enabling deferment of decision making when decisions cannot be made using current information available.