844 resultados para partial least square
Resumo:
This paper presents in detail a theoretical adaptive model of thermal comfort based on the “Black Box” theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient (λ) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results.
Resumo:
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE-HPLC, and high molecular weight glutenin subunit (HMW-GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G' and G") and lower tan 8 values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan delta and flatter bread loaves (lower form ratio).
Resumo:
The relationships between wheat protein quality and baking properties of 20 flour samples were studied for two breadmaking processes; a hearth bread test and the Chorleywood Bread Process (CBP). The strain hardening index obtained from dough inflation measurements, the proportion of unextractable polymeric protein, and mixing properties were among the variables found to be good indicators of protein quality and suitable for predicting potential baking quality of wheat flours. By partial least squares regression, flour and dough test variables were able to account for 71-93% of the variation in crumb texture, form ratio and volume of hearth loaves made using optimal mixing and fixed proving times. These protein quality variables were, however, not related to the volume of loaves produced by the CBP using mixing to constant work input and proving to constant height. On the other hand, variation in crumb texture of CBP loaves (54-55%) could be explained by protein quality. The results underline that the choice of baking procedure and loaf characteristics is vital in assessing the protein quality of flours. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This study investigates the superposition-based cooperative transmission system. In this system, a key point is for the relay node to detect data transmitted from the source node. This issued was less considered in the existing literature as the channel is usually assumed to be flat fading and a priori known. In practice, however, the channel is not only a priori unknown but subject to frequency selective fading. Channel estimation is thus necessary. Of particular interest is the channel estimation at the relay node which imposes extra requirement for the system resources. The authors propose a novel turbo least-square channel estimator by exploring the superposition structure of the transmission data. The proposed channel estimator not only requires no pilot symbols but also has significantly better performance than the classic approach. The soft-in-soft-out minimum mean square error (MMSE) equaliser is also re-derived to match the superimposed data structure. Finally computer simulation results are shown to verify the proposed algorithm.
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.
Resumo:
Purpose – While Freeman's stakeholder management approach has attracted much attention from both scholars and practitioners, little empirical work has considered the interconnectedness of organisational perspectives and stakeholder perspectives. The purpose of this paper is to respond to this gap by developing and empirically testing a bi-directional model of organisation/stakeholder relationships. Design/methodology/approach – A conceptual framework is developed that integrates how stakeholders are affected by organisations with how they affect organisations. Quantitative data relating to both sides of the relationship are obtained from 700 customers of a European service organisation and analysed using partial least squares structural equation modelling technique. Findings – The findings provide empirical support for the notion of mutual dependency between organisations and stakeholders as advocated by stakeholder theorists. The results suggest that the way stakeholders relate to organisations is dependent on how organisations relate to stakeholders. Originality/value – The study is original on two fronts: first, it provides a framework and process that can be used by researchers to model bi-directional research with other stakeholder groups and in different contexts. Second, the study presents an example application of bi-directional research by empirically linking organisational and stakeholder expectations in the case of customers of a UK service organisation.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
The potential of visible-near infrared spectra, obtained using a light backscatter sensor, in conjunction with chemometrics, to predict curd moisture and whey fat content in a cheese vat was examined. A three-factor (renneting temperature, calcium chloride, cutting time), central composite design was carried out in triplicate. Spectra (300–1,100 nm) of the product in the cheese vat were captured during syneresis using a prototype light backscatter sensor. Stirring followed upon cutting the gel, and samples of curd and whey were removed at 10 min intervals and analyzed for curd moisture and whey fat content. Spectral data were used to develop models for predicting curd moisture and whey fat contents using partial least squares regression. Subjecting the spectral data set to Jack-knifing improved the accuracy of the models. The whey fat models (R = 0.91, 0.95) and curd moisture model (R = 0.86, 0.89) provided good and approximate predictions, respectively. Visible-near infrared spectroscopy was found to have potential for the prediction of important syneresis indices in stirred cheese vats.
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..
Resumo:
A neurofuzzy classifier identification algorithm is introduced for two class problems. The initial fuzzy base construction is based on fuzzy clustering utilizing a Gaussian mixture model (GMM) and the analysis of covariance (ANOVA) decomposition. The expectation maximization (EM) algorithm is applied to determine the parameters of the fuzzy membership functions. Then neurofuzzy model is identified via the supervised subspace orthogonal least square (OLS) algorithm. Finally a logistic regression model is applied to produce the class probability. The effectiveness of the proposed neurofuzzy classifier has been demonstrated using a real data set.
Resumo:
This paper describes a novel adaptive noise cancellation system with fast tunable radial basis function (RBF). The weight coefficients of the RBF network are adapted by the multi-innovation recursive least square (MRLS) algorithm. If the RBF network performs poorly despite of the weight adaptation, an insignificant node with little contribution to the overall performance is replaced with a new node without changing the model size. Otherwise, the RBF network structure remains unchanged and only the weight vector is adapted. The simulation results show that the proposed approach can well cancel the noise in both stationary and nonstationary ANC systems.
Resumo:
In this paper, we propose a novel online modeling algorithm for nonlinear and nonstationary systems using a radial basis function (RBF) neural network with a fixed number of hidden nodes. Each of the RBF basis functions has a tunable center vector and an adjustable diagonal covariance matrix. A multi-innovation recursive least square (MRLS) algorithm is applied to update the weights of RBF online, while the modeling performance is monitored. When the modeling residual of the RBF network becomes large in spite of the weight adaptation, a node identified as insignificant is replaced with a new node, for which the tunable center vector and diagonal covariance matrix are optimized using the quantum particle swarm optimization (QPSO) algorithm. The major contribution is to combine the MRLS weight adaptation and QPSO node structure optimization in an innovative way so that it can track well the local characteristic in the nonstationary system with a very sparse model. Simulation results show that the proposed algorithm has significantly better performance than existing approaches.
Resumo:
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.
Resumo:
The application of metabolomics in multi-centre studies is increasing. The aim of the present study was to assess the effects of geographical location on the metabolic profiles of individuals with the metabolic syndrome. Blood and urine samples were collected from 219 adults from seven European centres participating in the LIPGENE project (Diet, genomics and the metabolic syndrome: an integrated nutrition, agro-food, social and economic analysis). Nutrient intakes, BMI, waist:hip ratio, blood pressure, and plasma glucose, insulin and blood lipid levels were assessed. Plasma fatty acid levels and urine were assessed using a metabolomic technique. The separation of three European geographical groups (NW, northwest; NE, northeast; SW, southwest) was identified using partial least-squares discriminant analysis models for urine (R 2 X: 0•33, Q 2: 0•39) and plasma fatty acid (R 2 X: 0•32, Q 2: 0•60) data. The NW group was characterised by higher levels of urinary hippurate and N-methylnicotinate. The NE group was characterised by higher levels of urinary creatine and citrate and plasma EPA (20 : 5 n-3). The SW group was characterised by higher levels of urinary trimethylamine oxide and lower levels of plasma EPA. The indicators of metabolic health appeared to be consistent across the groups. The SW group had higher intakes of total fat and MUFA compared with both the NW and NE groups (P≤ 0•001). The NE group had higher intakes of fibre and n-3 and n-6 fatty acids compared with both the NW and SW groups (all P< 0•001). It is likely that differences in dietary intakes contributed to the separation of the three groups. Evaluation of geographical factors including diet should be considered in the interpretation of metabolomic data from multi-centre studies.