928 resultados para parameter
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
A mechanism for amplification of mountain waves, and their associated drag, by parametric resonance is investigated using linear theory and numerical simulations. This mechanism, which is active when the Scorer parameter oscillates with height, was recently classified by previous authors as intrinsically nonlinear. Here it is shown that, if friction is included in the simplest possible form as a Rayleigh damping, and the solution to the Taylor-Goldstein equation is expanded in a power series of the amplitude of the Scorer parameter oscillation, linear theory can replicate the resonant amplification produced by numerical simulations with some accuracy. The drag is significantly altered by resonance in the vicinity of n/l_0 = 2, where l_0 is the unperturbed value of the Scorer parameter and n is the wave number of its oscillation. Depending on the phase of this oscillation, the drag may be substantially amplified or attenuated relative to its non-resonant value, displaying either single maxima or minima, or double extrema near n/l_0 = 2. Both non-hydrostatic effects and friction tend to reduce the magnitude of the drag extrema. However, in exactly inviscid conditions, the single drag maximum and minimum are suppressed. As in the atmosphere friction is often small but non-zero outside the boundary layer, modelling of the drag amplification mechanism addressed here should be quite sensitive to the type of turbulence closure employed in numerical models, or to computational dissipation in nominally inviscid simulations.
Resumo:
It has been argued that extended exposure to naturalistic input provides L2 learners with more of an opportunity to converge of target morphosyntactic competence as compared to classroom-only environments, given that the former provide more positive evidence of less salient linguistic properties than the latter (e.g., Isabelli 2004). Implicitly, the claim is that such exposure is needed to fully reset parameters. However, such a position conflicts with the notion of parameterization (cf. Rothman and Iverson 2007). In light of two types of competing generative theories of adult L2 acquisition – the No Impairment Hypothesis (e.g., Duffield and White 1999) and so-called Failed Features approaches (e.g., Beck 1998; Franceschina 2001; Hawkins and Chan 1997), we investigate the verifiability of such a claim. Thirty intermediate L2 Spanish learners were tested in regards to properties of the Null-Subject Parameter before and after study-abroad. The data suggest that (i) parameter resetting is possible and (ii) exposure to naturalistic input is not privileged.
Resumo:
We study systems with periodically oscillating parameters that can give way to complex periodic or nonperiodic orbits. Performing the long time limit, we can define ergodic averages such as Lyapunov exponents, where a negative maximal Lyapunov exponent corresponds to a stable periodic orbit. By this, extremely complicated periodic orbits composed of contracting and expanding phases appear in a natural way. Employing the technique of ϵ-uncertain points, we find that values of the control parameters supporting such periodic motion are densely embedded in a set of values for which the motion is chaotic. When a tiny amount of noise is coupled to the system, dynamics with positive and with negative nontrivial Lyapunov exponents are indistinguishable. We discuss two physical systems, an oscillatory flow inside a duct and a dripping faucet with variable water supply, where such a mechanism seems to be responsible for a complicated alternation of laminar and turbulent phases.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
We propose first, a simple task for the eliciting attitudes toward risky choice, the SGG lottery-panel task, which consists in a series of lotteries constructed to compensate riskier options with higher risk-return trade-offs. Using Principal Component Analysis technique, we show that the SGG lottery-panel task is capable of capturing two dimensions of individual risky decision making i.e. subjects’ average risk taking and their sensitivity towards variations in risk-return. From the results of a large experimental dataset, we confirm that the task systematically captures a number of regularities such as: A tendency to risk averse behavior (only around 10% of choices are compatible with risk neutrality); An attraction to certain payoffs compared to low risk lotteries, compatible with over-(under-) weighting of small (large) probabilities predicted in PT and; Gender differences, i.e. males being consistently less risk averse than females but both genders being similarly responsive to the increases in risk-premium. Another interesting result is that in hypothetical choices most individuals increase their risk taking responding to the increase in return to risk, as predicted by PT, while across panels with real rewards we see even more changes, but opposite to the expected pattern of riskier choices for higher risk-returns. Therefore, we conclude from our data that an “economic anomaly” emerges in the real reward choices opposite to the hypothetical choices. These findings are in line with Camerer's (1995) view that although in many domains, paid subjects probably do exert extra mental effort which improves their performance, choice over money gambles is not likely to be a domain in which effort will improve adherence to rational axioms (p. 635). Finally, we demonstrate that both dimensions of risk attitudes, average risk taking and sensitivity towards variations in the return to risk, are desirable not only to describe behavior under risk but also to explain behavior in other contexts, as illustrated by an example. In the second study, we propose three additional treatments intended to elicit risk attitudes under high stakes and mixed outcome (gains and losses) lotteries. Using a dataset obtained from a hypothetical implementation of the tasks we show that the new treatments are able to capture both dimensions of risk attitudes. This new dataset allows us to describe several regularities, both at the aggregate and within-subjects level. We find that in every treatment over 70% of choices show some degree of risk aversion and only between 0.6% and 15.3% of individuals are consistently risk neutral within the same treatment. We also confirm the existence of gender differences in the degree of risk taking, that is, in all treatments females prefer safer lotteries compared to males. Regarding our second dimension of risk attitudes we observe, in all treatments, an increase in risk taking in response to risk premium increases. Treatment comparisons reveal other regularities, such as a lower degree of risk taking in large stake treatments compared to low stake treatments and a lower degree of risk taking when losses are incorporated into the large stake lotteries. Results that are compatible with previous findings in the literature, for stake size effects (e.g., Binswanger, 1980; Antoni Bosch-Domènech & Silvestre, 1999; Hogarth & Einhorn, 1990; Holt & Laury, 2002; Kachelmeier & Shehata, 1992; Kühberger et al., 1999; B. J. Weber & Chapman, 2005; Wik et al., 2007) and domain effect (e.g., Brooks and Zank, 2005, Schoemaker, 1990, Wik et al., 2007). Whereas for small stake treatments, we find that the effect of incorporating losses into the outcomes is not so clear. At the aggregate level an increase in risk taking is observed, but also more dispersion in the choices, whilst at the within-subjects level the effect weakens. Finally, regarding responses to risk premium, we find that compared to only gains treatments sensitivity is lower in the mixed lotteries treatments (SL and LL). In general sensitivity to risk-return is more affected by the domain than the stake size. After having described the properties of risk attitudes as captured by the SGG risk elicitation task and its three new versions, it is important to recall that the danger of using unidimensional descriptions of risk attitudes goes beyond the incompatibility with modern economic theories like PT, CPT etc., all of which call for tests with multiple degrees of freedom. Being faithful to this recommendation, the contribution of this essay is an empirically and endogenously determined bi-dimensional specification of risk attitudes, useful to describe behavior under uncertainty and to explain behavior in other contexts. Hopefully, this will contribute to create large datasets containing a multidimensional description of individual risk attitudes, while at the same time allowing for a robust context, compatible with present and even future more complex descriptions of human attitudes towards risk.
Resumo:
Objective cyclone tracking applied to a 30-yr reanalysis dataset shows that cyclone development in the summer and autumn seasons is active in the tropics and extratropics and inactive in the subtropics. To understand this geographically bimodal distribution of cyclone development associated with tropical and extratropical cyclones quantitatively, the direct relationship between cyclone types and their environments are assessed by using a parameter space of environmental variables [environmental parameter space (EPS)]. The number of cyclones is analyzed in terms of two different factors: the environmental conditions favorable for cyclone development and the area size that satisfies the favorable condition. The EPS analysis is mainly conducted for two representative environmental parameters that are commonly used for cyclone analysis: potential intensity for tropical cyclones and baroclinicity for extratropical cyclones. The geographically bimodal distribution is attributed to the high sensitivity of the cyclone development to the change in the environmental fields from tropics to extratropics. In addition, the bimodal distribution is partly attributed to the rapid change in the environmental fields from tropics to extratropics. The EPS analysis also shows that other environmental parameters, including relative humidity and vertical velocity, may enhance the contrast between the tropics (extratropics) and subtropics, whereas they are not essential for determining cyclone types. The relationship between cyclones and their environments is found to be similar between the hemispheres in the EPS, although the geographical distribution, particularly the longitudinal uniformity, is markedly different between the hemispheres.
Resumo:
The permeability parameter (C) for the movement of cephalosporin C across the outer membrane of Pseudomonas aeruginosa was measured using the widely accepted method of Zimmermann & Rosselet. In one experiment, the value of C varied continuously from 4·2 to 10·8 cm3 min-1 (mg dry wt cells)-1 over a range of concentrations of the test substrate, cephalosporin C, from 50 to 5 μm. Dependence of C on the concentration of test substrate was still observed when the effect of a possible electric potential difference across the outer membrane was corrected for. In quantitative studies of β-lactam permeation the dependence of C on the concentration of β-lactam should be taken into account.
Resumo:
The transition parameter is based on the electron characteristics close to the Earth's dayside magnetopause, but reveals systematic ordering of other, independent, data such as the ion flow, density and temperature and the rientation and strength of the magnetic field. Potentially, therefore, it is a very useful tool for resolving ambiguities in a sequence of satellite data caused by the effects of structure and motion of the boundary; however, its application has been limited because there has been no clear understanding of how it works. We present an analysis of data from the AMPTE-UKS satellite which shows that the transition parameter orders magnetopause data because magnetic reconnection generates newly-opened field lines which coat the boundary: a direct relationship is found with the time elapsed since the boundary-layer field line was opened. A simple model is used to reproduce this behaviour.
Resumo:
Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.
Resumo:
In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO2 increasing at 1% yr−1) during the second doubling of CO2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO2 radiative forcing may rise more rapidly than logarithmically with CO2 concentration. Third, the climate feedback parameter may decline as the CO2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.
Resumo:
Forensic taphonomy involves the use of decomposition to estimate postmortem interval (PMI) or locate clandestine graves. Yet, cadaver decomposition remains poorly understood, particularly following burial in soil. Presently, we do not know how most edaphic and environmental parameters, including soil moisture, influence the breakdown of cadavers following burial and alter the processes that are used to estimate PMI and locate clandestine graves. To address this, we buried juvenile rat (Rattus rattus) cadavers (∼18 g wet weight) in three contrasting soils from tropical savanna ecosystems located in Pallarenda (sand), Wambiana (medium clay), or Yabulu (loamy sand), Queensland, Australia. These soils were sieved (2 mm), weighed (500 g dry weight), calibrated to a matric potential of -0.01 megapascals (MPa), -0.05 MPa, or -0.3 MPa (wettest to driest) and incubated at 22 °C. Measurements of cadaver decomposition included cadaver mass loss, carbon dioxide-carbon (CO2-C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, ninhydrin-reactive nitrogen (NRN) and soil pH. Cadaver burial resulted in a significant increase in CO2-C evolution, MBC, enzyme activities, NRN and soil pH. Cadaver decomposition in loamy sand and sandy soil was greater at lower matric potentials (wetter soil). However, optimal matric potential for cadaver decomposition in medium clay was exceeded, which resulted in a slower rate of cadaver decomposition in the wettest soil. Slower cadaver decomposition was also observed at high matric potential (-0.3 MPa). Furthermore, wet sandy soil was associated with greater cadaver decomposition than wet fine-textured soil. We conclude that gravesoil moisture content can modify the relationship between temperature and cadaver decomposition and that soil microorganisms can play a significant role in cadaver breakdown. We also conclude that soil NRN is a more reliable indicator of gravesoil than soil pH.
Resumo:
In this article, along with others, we take the position that the Null-Subject Parameter (NSP) (Chomsky 1981; Rizzi 1982) cluster of properties is narrower in scope than some originally contended. We test for the resetting of the NSP by English L2 learners of Spanish at the intermediate level, including poverty-of-the stimulus knowledge of the Overt Pronoun Constraint (Montalbetti 1984). Our participants are tested before and after five months' residency in Spain in an effort to see if increased amounts of native exposure are particularly beneficial for parameter resetting. Although we demonstrate NSP resetting for some of the L2 learners, our data essentially demonstrate that even with the advent of time/exposure to native input, there is no immediate gainful effect for NSP resetting.
Resumo:
We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.