1000 resultados para palaeogeography


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mid-Holocene climate optimum is inferred from a palaeosalinity reconstruction of a closed saline lake (Beall Lake) from the Windmill Islands, East Antarctica using an expanded diatom salinity weighted averaging (WA) regression and calibration model. The addition of 14 lakes and ponds from the Windmill Islands, East Antarctica, to an existing weighted averaging regression and calibration palaeosalinity model of 33 lakes from the Vestfold Hills, East Antarctica expands the number of taxa and lakes and the range of salinity in the existing model and improves the model's predictive ability. This improved model was used to infer Holocene changes in lake water salinity in Beall Lake, Windmill Islands. Six changes in diatom-inferred salinity in Beall Lake are put into broad chronological context based on three radiocarbon dates: as the East Antarctic Ice Sheet (EAIS) retreated from the Windmill Islands during the early Holocene (~9000-8130 corr. yr BP), Beall Lake formed as a melt water-fed freshwater lake, which gradually became more saline as marine influence increased from ~8000 corr. yr BP. Between ~8000 and 4800 corr. yr BP, the diatom assemblage included planktonic marine taxa such as Chaetoceros spp. and cryophilic taxa such as Fragilariopsis cylindrus, which indicate favourable summer growth conditions. A mid-Holocene warm period produced a climate that was warmer and more humid with increased precipitation and snow accumulation. This is reflected in the Beall Lake core as a reduction in the salinity of the lake diatom assemblage from ~4800-4600 corr. yr BP. Holocene isostatic uplift rates in the Windmill Islands vary from 5-6 m/1000 yr. By applying this uplift rate, it is calculated that the bedrock would have risen above sea level by ~4000 yr BP. The Beall Lake core diatom assemblage from ~4600-2900 corr. yr BP includes both marine cryophilic and planktonic taxa together with freshwater benthic and planktonic lacustrine taxa. This mix of species indicates the emergence of the lake from the sea around ~4600 corr. yr BP. From ~2800 corr. yr BP, retreat of the ice margin led to increasing melt water inputs and associated freshening of the lake basin until ~1900 corr. yr BP. The lake basin had no oceanic influence by this time, allowing a terrestrial freshwater flora to establish and thrive for the next ~1000 yr. At ~1850 corr. yr BP, a sudden and rapid salinity change is evident in Beall Lake. A late Holocene warm period between 2000 and 1000 yr BP has been observed in ice core records from Law Dome (an ice cap abutting the Windmill Islands to the east and north). It is therefore inferred that, at ~1850 corr. yr BP, summer temperatures within the Beall Lake catchment area were much higher than present summer temperatures. The climate optimum identified in the Beall Lake core ~4800 yr BP confirms mid-Holocene warming of the Windmill Islands and suggests a synchronous mid-Holocene climate optimum occurred across coastal East Antarctica. In addition, the abrupt climate change inferred at ~1850 yr BP suggests that higher resolution sampling of sediment cores from coastal East Antarctic limnological oases will provide more evidence of rapid climate change events over coastal East Antarctica in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Eocene diatom and silicoflagellate record of ODP Site 1260A (Demerara Rise) is studied quantitatively in order to throw light on the changes that siliceous phytoplankton communities experienced during a Middle Eocene warming event that occurred between 44.0 and 42.0 Ma. Both Pianka's overlap index, calculated per couple of successive samples, and cluster analysis, point to a number of significant turnover events highlighted by changes in the structure of floristic communities. The pre-warming flora, dominated by cosmopolitan species of the diatom genus Triceratium, is replaced during the warming interval by a new and more diverse assemblage, dominated by Paralia sulcata (an indicator of high productivity) and two endemic tropical species of the genus Hemiaulus. The critical warming interval is characterized by a steady increase in biogenic silica and a comparable increase in excess Ba, both reflecting an increase in productivity. In general, it appears that high productivity not only increased the flux of biogenic silica, but also sustained a higher diversity in the siliceous phytoplankton communities. The microflora preserved above the critical interval is once again of low diversity and dominated by various species of the diatom genus Hemiaulus. All assemblages in the studied material are characterized by the total absence of continental and benthic diatoms and the relative abundance of neritic forms, suggesting a transitional depositional environment between the neritic and the oceanic realms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 6200 year old peat sequence, cored in a volcanic crater on the sub-Antarctic Ile de la Possession (Iles Crozet), has been investigated, based on a multi-proxy approach. The methods applied are macrobotanical (mosses, seeds and fruits) and diatom analyses, complemented by geochemical (Rock-Eval6) and rock magnetic measurements. The chronology of the core is based on 5 radiocarbon dates. When combining all the proxy data the following changes could be inferred. From the onset of the peat formation (6200 cal yr BP) until ca. 5550 cal yr BP, biological production was high and climatic conditions must have been relatively warm. At ca. 5550 cal yr BP a shift to low biological production occurred, lasting until ca. 4600 cal yr BP. During this period the organic matter is well preserved, pointing to a cold and/or wet environment. At ca. 4600 cal yr BP, biological production increased again. From ca. 4600 cal yr BP until ca. 4100 cal yr BP a 'hollow and hummock' micro topography developed at the peat surface, resulting in the presence of a mixture of wetter and drier species in the macrobotanical record. After ca. 4100 cal yr BP, the wet species disappear and a generally drier, acidic bog came into existence. A major shift in all the proxy data is observed at ca. 2800 cal yr BP, pointing to wetter and especially windier climatic conditions on the island probably caused by an intensification and/or latitudinal shift of the southern westerly belt. Caused by a stronger wind regime, erosion of the peat surface occurred at that time and a lake was formed in the peat deposits of the crater, which is still present today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the stratigraphic distribution of several species of calcareous nannofossil in the middle Eocene early-Oligocene from four Ocean Drilling Program (ODP) sites located between 60° and 65°S paleolatitude in the Southern Atlantic and Indian Oceans. Useful nannofossil datums that should facilitate construction of age-models and contribute to an integrated chronology for the upper Paleogene Southern Ocean sediments from ~42 to 33 Ma are summarized. The distribution patterns of calcareous nannofossils, studied by means of quantitative and semiquantitative methods, provide an improvement of the classical Southern Ocean biozonations, introducing new biostratigraphically useful biohorizons, and testing their reproducibility within and outside the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The iterative evolutionary radiation of planktic foraminifers is a well-documented macroevolutionary process. Here we document the accompanying size changes in entire planktic foraminiferal assemblages for the past 70 My and their relationship to paleoenvironmental changes. After the size decrease at the Cretaceous/Paleogene (K/P) boundary, high latitude assemblages remained consistently small. Size evolution in low latitudes can be divided into three major phases: the first is characterized by dwarfs (65-42 Ma), the second shows moderate size fluctuations (42-14 Ma), and in the third phase, planktic foraminifers have grown to the unprecedented sizes observed today. Our analyses of size variability with paleoproxy records indicate that periods of size increase coincided with phases of global cooling (Eocene and Neogene). These periods were characterized by enhanced latitudinal and vertical temperature gradients in the oceans and high diversity (polytaxy). In the Paleocene and during the Oligocene, the observed (minor) size changes of the largely low-diversity (oligotaxic) assemblages seem to correlate with productivity changes. However, polytaxy per se was not responsible for larger test sizes.

Relevância:

10.00% 10.00%

Publicador: