965 resultados para one-dimensional waveguide
Resumo:
Part 1 of this thesis is about the 24 November, 1987, Superstition Hills earthquakes. The Superstition Hills earthquakes occurred in the western Imperial Valley in southern California. The earthquakes took place on a conjugate fault system consisting of the northwest-striking right-lateral Superstition Hills fault and a previously unknown Elmore Ranch fault, a northeast-striking left-lateral structure defined by surface rupture and a lineation of hypocenters. The earthquake sequence consisted of foreshocks, the M_s 6.2 first main shock, and aftershocks on the Elmore Ranch fault followed by the M_s 6.6 second main shock and aftershocks on the Superstition Hills fault. There was dramatic surface rupture along the Superstition Hills fault in three segments: the northern segment, the southern segment, and the Wienert fault.
In Chapter 2, M_L≥4.0 earthquakes from 1945 to 1971 that have Caltech catalog locations near the 1987 sequence are relocated. It is found that none of the relocated earthquakes occur on the southern segment of the Superstition Hills fault and many occur at the intersection of the Superstition Hills and Elmore Ranch faults. Also, some other northeast-striking faults may have been active during that time.
Chapter 3 discusses the Superstition Hills earthquake sequence using data from the Caltech-U.S.G.S. southern California seismic array. The earthquakes are relocated and their distribution correlated to the type and arrangement of the basement rocks. The larger earthquakes occur only where continental crystalline basement rocks are present. The northern segment of the Superstition Hills fault has more aftershocks than the southern segment.
An inversion of long period teleseismic data of the second mainshock of the 1987 sequence, along the Superstition Hills fault, is done in Chapter 4. Most of the long period seismic energy seen teleseismically is radiated from the southern segment of the Superstition Hills fault. The fault dip is near vertical along the northern segment of the fault and steeply southwest dipping along the southern segment of the fault.
Chapter 5 is a field study of slip and afterslip measurements made along the Superstition Hills fault following the second mainshock. Slip and afterslip measurements were started only two hours after the earthquake. In some locations, afterslip more than doubled the coseismic slip. The northern and southern segments of the Superstition Hills fault differ in the proportion of coseismic and postseismic slip to the total slip.
The northern segment of the Superstition Hills fault had more aftershocks, more historic earthquakes, released less teleseismic energy, and had a smaller proportion of afterslip to total slip than the southern segment. The boundary between the two segments lies at a step in the basement that separates a deeper metasedimentary basement to the south from a shallower crystalline basement to the north.
Part 2 of the thesis deals with the three-dimensional velocity structure of southern California. In Chapter 7, an a priori three-dimensional crustal velocity model is constructed by partitioning southern California into geologic provinces, with each province having a consistent one-dimensional velocity structure. The one-dimensional velocity structures of each region were then assembled into a three-dimensional model. The three-dimension model was calibrated by forward modeling of explosion travel times.
In Chapter 8, the three-dimensional velocity model is used to locate earthquakes. For about 1000 earthquakes relocated in the Los Angeles basin, the three-dimensional model has a variance of the the travel time residuals 47 per cent less than the catalog locations found using a standard one-dimensional velocity model. Other than the 1987 Whittier earthquake sequence, little correspondence is seen between these earthquake locations and elements of a recent structural cross section of the Los Angeles basin. The Whittier sequence involved rupture of a north dipping thrust fault bounded on at least one side by a strike-slip fault. The 1988 Pasadena earthquake was deep left-lateral event on the Raymond fault. The 1989 Montebello earthquake was a thrust event on a structure similar to that on which the Whittier earthquake occurred. The 1989 Malibu earthquake was a thrust or oblique slip event adjacent to the 1979 Malibu earthquake.
At least two of the largest recent thrust earthquakes (San Fernando and Whittier) in the Los Angeles basin have had the extent of their thrust plane ruptures limited by strike-slip faults. This suggests that the buried thrust faults underlying the Los Angeles basin are segmented by strike-slip faults.
Earthquake and explosion travel times are inverted for the three-dimensional velocity structure of southern California in Chapter 9. The inversion reduced the variance of the travel time residuals by 47 per cent compared to the starting model, a reparameterized version of the forward model of Chapter 7. The Los Angeles basin is well resolved, with seismically slow sediments atop a crust of granitic velocities. Moho depth is between 26 and 32 km.
Resumo:
The three-dimensional coupled wave theory is extended to systematically investigate the diffraction properties of finite-sized anisotropic volume holographic gratings (VHGs) under ultrashort pulsed beam (UPB) readout. The effects of the grating geometrical size and the polarizations of the recording and readout beams on the diffraction properties are presented, in particular under the influence of grating material dispersion. The wavelength selectivity of the finite-sized VHG is analyzed. The wavelength selectivity determines the intensity distributions of the transmitted and diffracted pulsed beams along the output face of the VHG. The distortion and widening of the diffracted pulsed beams are different for different points on the output face, as is numerically shown for a VHG recorded in a LiNbO3 crystal. The beam quality is analyzed, and the variations of the total diffraction efficiency are shown in relation to the geometrical size of the grating and the temporal width of the readout UPB. In addition, the diffraction properties of the finite-sized and one-dimensional VHG for pulsed and continuous-wave readout are compared. The study shows the potential application of VHGs in controlling spatial and temporal features of UPBs simultaneously. (C) 2007 Optical Society of America
Resumo:
Two-dimensional MOS device simulation programs such as MINIMOS left bracket 1 right bracket are limited in their validity due to assumptions made in defining the initial two-dimensional source/drain profiles. The two options available to define source/drain regions both construct a two-dimensional profile from one-dimensional profiles normal to the surface. Inaccuracies in forming these source/drain profiles can be expected to effect predicted device characteristics as channel dimensions of the device are reduced. This paper examines these changes by interfacing numerically similated two dimensional source/drain profiles to MINIMOS and comparing predicted I//D-V//D characteristics with 2-D interfacing, 2-D profiles constructed from interfaced 1-D profiles and MINIMOS self generated profiles. Data obtained for simulations of 3 mu m N and P channel devices are presented.
Resumo:
The dynamical behaviour of the sidewall has an important influence on tyre vibration characteristics. Nonetheless, it remains crudely represented in many existing models. The current work considers a geometrically accurate, two-dimensional, sidewall description, with a view to identifying potential shortcomings in the approximate formulations and identifying the physical characteristics that must be accounted for. First, the mean stress state under pressurisation and centrifugal loading is investigated. Finite-Element calculations show that, while the loaded sidewall shape remains close to a toroid, its in-plane tensions differ appreciably from the associated analytical solution. This is largely due to the inability of the anisotropic sidewall material to sustain significant azimuthal stress. An approximate analysis, based on the meridional tension alone, is therefore developed, and shown to yield accurate predictions. In conjunction with a set of formulae for the 'engineering constants' of the sidewall material, the approximate solutions provide a straightforward and efficient means of determining the base state for the vibration analysis. The latter is implemented via a 'waveguide' discretisation of a variational formulation. Its results show that, while the full geometrical description is necessary for a complete and reliable characterisation of the sidewall's vibrational properties, a one-dimensional approximation will often be satisfactory in practice. Meridional thickness variations only become important at higher frequencies (above 500 Hz for the example considered here), and rotational inertia effects appear to be minor at practical vehicle speeds. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Low-temperature photoluminescence measurement is performed on an undoped AlxGa1-xN/GaN heterostructure. Temperature-dependent Hall mobility confirms the formation of two-dimensional electron gas (2DEG) near the heterointerface. A weak photoluminescence (PL) peak with the energy of similar to 79meV lower than the free exciton (FE) emission of bulk GaN is related to the radiative recombination between electrons confined in the triangular well and the holes near the flat-band region of GaN. Its identification is supported by the solution of coupled one-dimensional Poisson and Schrodinger equations. When the temperature increases, the red shift of the 2DEG related emission peak is slower than that of the FE peak. The enhanced screening effect coming from the increasing 2DEG concentration and the varying electron distribution at two lowest subbands as a function of temperature account for such behaviour.
Resumo:
Waveguides induced by one-dimensional spatial photovoltaic solitons are investigated in both self-defocusing-type and self-focusing-type photorefractive photovoltaic materials. The number of possible guided modes in a waveguide induced by a bright photovoltaic soliton is obtained using numerical techniques. This number of guided modes increases monotonically with increasing intensity ratio, which is the ratio between the peak intensity of the soliton and the sum of the background illumination and the dark irradiance. On the other hand, waveguides induced by dark photovoltaic solitons are always single mode for all intensity ratios, and the higher the intensity ratio, the more confined is the optical energy near the centre of the dark photovoltaic soliton. Relevant examples are provided where photorefractive photovoltaic materials are of self-defocusing and self-focusing types. The properties of soliton-induced waveguides in both self-defocusing-type and self-focusing-type materials are also discussed.
Resumo:
A one-dimensional quantum waveguide theory for mesoscopic structures is proposed, and the boundary conditions of the wave functions at an intersection are given. The Aharonov-Bohm effect is quantitatively discussed with use of this theory, and the reflection, transmission amplitudes, etc., are given as functions of the magnetic flux, the arm lengths, and the wave vector. It is found that the oscillating current consists of a significant component of the second harmonic. This theory is also applied to investigate quantum-interference devices. The results on the Aharonov-Bohm effect and the quantum-interference devices are found to be in agreement with previous theoretical results.
Resumo:
In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.
Resumo:
We describe a facile one-pot process to synthesize Ag nanoplates by reducing silver nitrate with 3,3',5,5'-tetramethylbenzidine (TMB) at room temperature. The silver nanoplates were highly oriented single crystals with (111) planes as the basal planes. TMB can be readily oxidized to charge-transfer (CT) complex between TMB, as a donor, and (TMB)(2+), as an acceptor. The pi-pi interaction of the neutral amine (TMB) and diiminium structure (dication, TMB2+) result in the formation of one-dimensional CT complex nanofiber.
Resumo:
Here we present a simple wet-chemical approach to synthesize flower-like silver nanostrip assembling architecture at room temperature. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images indicate that these microstructures with the diameter of similar to 500nm exhibit hietarchical characteristic. X-ray diffraction (XRD), energy-dispersed X-ray spectroscopy (EDX) and Raman spectroscopy indicate that poly (o-diaminobenzene) (PDB) also exists in the silver hierarchical microstructure.
Resumo:
Structural tailoring for dimensionally confined electrical properties is fundamentally important for nanodevices and the relevant technologies. Titanate-based nanotubes were taken as a prototype one-dimensional material to study. First, Na0.96H1.04Ti3O7 center dot 3.42H(2)O nanotubes were prepared by a simple hydrothermal condition, which converted into Na0.036H1.964Ti3O7 center dot 3.52H(2)O nanotubes by a subsequent acidic rinsing. Systematic sample characterization using combined techniques of X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, electron paramagnetic resonance, Fourier transform infrared spectroscopy, elemental analyses, and alternative current impedance indicated that both nanotubes possessed a scrolled trititanate-type structure with the (200) crystal face predominant on the tube surface. With increasing temperature, both nanotubes underwent a continuous dehydration process, which however imposed different impacts oil the structures and electrical properties, depending on the types of the nanotubes
Resumo:
By varying the substituent position of aminomethyl on pyridine ring in acid solution, different dimensional lead bromide frameworks ranging from zero-dimension and one-dimension to two-dimension were obtained. 2-(Aminomethyl)pyridine (2-AMP) or 3-(aminomethyl)pyridine (3-AMP) and PbBr2 construct hybrid perovskites, of which (H(2)2-AMP)PbBr4 (1) exhibits two-dimensional perovskite sheets with special hydrogen bonds and (H(2)3-AMP)PbBr6 (2) shows an uncommon zero-dimensional inorganic framework with isolated octahedra. The characteristic exciton peaks in absorption spectra are located at 431 nm for compound 1 and at 428 nm for compound 2. (H(2)4-AMP)PbBr4 (3) with one-dimensional zigzag edge-sharing octahedral PbBr(4)(2-)chains can be obtained using 4-(aminomethyl)pyridine (4-AMP) as organic component under the same experimental conditions as those for 2-AMP and 3-AMP.
Resumo:
Polyelectrolyte-protected gold nanoparticles have been facilely obtained by heating an amine-containing polyelectrolyte/HAuCl4 aqueous solution without the additional step of introducing other reducing agents. All experimental data indicate that different initial molar ratio of polyelectrolyte to gold can lead to the formation of dispersed nanoparticles, quasi one-dimensional aggregates of nanoparticles or bulk metal deposits. More importantly, the growth kinetics of gold particles thus formed can be tuned by changing the initial molar ratio of polyelectrolyte to gold.
Resumo:
Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H2O)(1.5)](2)Mo6O19.CH3CN, 1, and [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)]XMo12O40.6DMF.CH3CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) Angstrom, c = 14.2676(4) Angstrom, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15,7435(17) Angstrom, c = 30.042(7) Angstrom, gamma = 120degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) Angstrom, c = 29.9778(18) Angstrom, gamma = 120degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo6O19](2-) polyoxoanions and the CH2 groups of crown ether molecules, Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo12O40](3-) (X = As and P) polyoxoanion "guests" resided.
Resumo:
Two novel organic-inorganic hybrid compounds, (H(2)enMe)(4)(H3O)[Ni(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (1) and (H(2)enMe)(4)(H3O)[Cu(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (2) (enMe = 1,2-diaminopropane), have been hydrothermally synthesized and characterized by elemental analyses, IR, EPR, XPS, UV-Vis spectra and TG analyses. Single crystal X-ray diffraction shows that 1 and 2 are isostructural compounds. Both the compounds exhibit an unusual two-dimensional (2-D) window-like network consisting of one-dimensional (1-D) chains of sodium molybdenum phosphate anions connected by transition metal coordination complexes cations. Compound 1 and 2 represent the first 2-D molybdenum phosphate skeleton pillared by transition metal complex fragments.