942 resultados para one-dimensional hydrogen atom
Resumo:
We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.
Resumo:
We consider the one-dimensional asymmetric simple exclusion process (ASEP) in which particles jump to the right at rate p is an element of (1/2, 1.] and to the left at rate 1 - p, interacting by exclusion. In the initial state there is a finite region such that to the left of this region all sites are occupied and to the right of it all sites are empty. Under this initial state, the hydrodynamical limit of the process converges to the rarefaction fan of the associated Burgers equation. In particular suppose that the initial state has first-class particles to the left of the origin, second-class particles at sites 0 and I, and holes to the right of site I. We show that the probability that the two second-class particles eventually collide is (1 + p)/(3p), where a collision occurs when one of the particles attempts to jump over the other. This also corresponds to the probability that two ASEP processes. started from appropriate initial states and coupled using the so-called ""basic coupling,"" eventually reach the same state. We give various other results about the behaviour of second-class particles in the ASEP. In the totally asymmetric case (p = 1) we explain a further representation in terms of a multi-type particle system, and also use the collision result to derive the probability of coexistence of both clusters in a two-type version of the corner growth model.
Resumo:
The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival time in the general d-dimensional case. We then consider a simplified one-dimensional model (where transition probabilities and obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for the tail of the survival time. In addition, we study also the ""mixed"" probability measures (quenched with respect to the obstacles and annealed with respect to the transition probabilities and vice-versa) and give results for tails of the survival time with respect to these probability measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of Branching Random Walks in Random Environment (BRWRE).
Resumo:
We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.
Resumo:
A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.
Resumo:
This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding ""rebar"" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.
Resumo:
The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.
Resumo:
The present work reports on the effect of the type of backside contact used in the electrochemical process and their relation with the structural features and optical responses of the one-dimensional photonic crystal (PC) anodized in simple and double electrochemical cell. The PC, obtained in the single cell, showed to have thicker layers than of the PC obtained in double electrochemical cell. Additionally, the PC obtained in double cell showed highest reflectance in the band gap region than of the PCs obtained in single cell. These results suggest that the interface roughness between adjacent layers in the PC devices obtained in double electrochemical cell is minimized. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.
Resumo:
The recent claim that the exit probability (EP) of a slightly modified version of the Sznadj model is a continuous function of the initial magnetization is questioned. This result has been obtained analytically and confirmed by Monte Carlo simulations, simultaneously and independently by two different groups (EPL, 82 (2008) 18006; 18007). It stands at odds with an earlier result which yielded a step function for the EP (Europhys. Lett., 70 (2005) 705). The dispute is investigated by proving that the continuous shape of the EP is a direct outcome of a mean-field treatment for the analytical result. As such, it is most likely to be caused by finite-size effects in the simulations. The improbable alternative would be a signature of the irrelevance of fluctuations in this system. Indeed, evidence is provided in support of the stepwise shape as going beyond the mean-field level. These findings yield new insight in the physics of one-dimensional systems with respect to the validity of a true equilibrium state when using solely local update rules. The suitability and the significance to perform numerical simulations in those cases is discussed. To conclude, a great deal of caution is required when applying updates rules to describe any system especially social systems. Copyright (C) EPLA, 2011
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.
Resumo:
Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.
Resumo:
Expansion tubes are impulse facilities capable of generating highly energetic hyper-sonic flows. This work surveys a broad range of flow conditions produced in the facility X1 with carbon dioxide test gas, for simulation of spacecraft entry into the Martian atmosphere. Conditions with nominal flow speeds of 7, 9, 11 and 13 km/s were tested. The freestream conditions were calibrated using static/Pitot pressure measurements and advanced optical diagnostics. An extensive set of holographic interferometry experiments was performed on flows over wedges for quantitative study of freestream and post-shock densities, and post-shock ionisation. A one-dimensional code with frozen and equilibrium chemistry capabilities was used to estimate the freestream conditions. An equilibrium chemistry model produced a good match to measured freestream quantities at the high enthalpy conditions which are a major aim of this facility's operation. The freestream in the lower enthalpy conditions was found to be heavily influenced by chemical non-equilibrium. Non-equilibrium in the final unsteady expansion process of flow generation was accounted for by switching from equilibrium to frozen chemistry at a predetermined point. Comparison between the freestream density results of holographic interferometry, pressure measurements and computations shows good agreement.