858 resultados para nonlinear waves propagation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the mechanism of intercellular calcium wave propagation in bone cell networks was identified. By using micro-contact printing and self-assembled monolayer technologies, two types of in vitro bone cell networks were constructed: open-ended linear chains and looped hexagonal networks with precisely controlled intercellular distances. Intracellular calcium responses of the cells were recorded and analysed when a single cell in the network was mechanically stimulated by nano-indentation. The looped cell network was shown to be more efficient than the linear pattern in transferring calcium signals from cell to cell. This phenomenon was further examined by pathway-inhibition studies. Intercellular calcium wave propagation was significantly impeded when extracellular adenosine triphosphate (ATP) in the medium was hydrolysed. Chemical uncoupling of gap junctions, however, did not significantly decrease the transferred distance of the calcium wave in the cell networks. Thus, it is extracellular ATP diffusion, rather than molecular transport through gap junctions, that dominantly mediates the transmission of mechanically elicited intercellular calcium waves in bone cells. The inhibition studies also demonstrated that the mechanical stimulation-induced calcium responses required extracellular calcium influx, whereas the ATP-elicited calcium wave relied on calcium release from the calcium store of the endoplasmic reticulum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacial internal waves in a three-layer density-stratified fluid are investigated using a singular method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. as expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interfacial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, the random inter facial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order a symptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory. The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described. As expected, the solutions include those derived by Chen (2006) as a special case where the steady uniform currents of the N-layer fluids are taken as zero, and the solutions also reduce to those obtained by Song (2005) for second-order solutions for random interfacial waves with steady uniform currents if N=2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vertical 2-D water-mud numerical model is developed for estimating the rate of mud mass transport under wave action. A nonlinear semi-empirical rheology model featured by remarkable hysteresis loops in the relationships of the shear stress versus both the shear strain and the rate of shear strain of mud is applied to this water mud model. A logarithmic grid in the vertical direction is employed for numerical treatment, which increases the resolution of the flow in the neighborhood of both sides of the interface. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes. (C) 2006 Elsevier Ltd. All rights reserved.