493 resultados para neutralizing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RTX toxins (repeats in the structural toxin) are pore-forming protein toxins produced by a broad range of pathogenic Gram-negative bacteria. In vitro, RTX toxins mostly exhibit a cytotoxic and often also a hemolytic activity. They are particularly widespread in species of the family Pasteurellaceae which cause infectious diseases, most frequently in animals but also in humans. Most RTX toxins are proteins with a molecular mass of 100-200 kDa and are post-translationally activated by acylation via a specific activator protein. The repeated structure of RTX toxins, which gave them their name, is composed of iterative glycine-rich nonapeptides binding Ca2+ on the C-terminal half of the protein. Genetic analysis of RTX toxins of various species of Pasteurellaceae and of a few other Gram-negative bacteria gave evidence of horizontal transfer of genes encoding RTX toxins and led to speculations that RTX toxins might have originated from Pasteurellaceae. The toxic activities of RTX toxins in host cells may lead to necrosis and apoptosis and the underlying detailed mechanisms are currently under investigation. The impact of RTX toxins in pathogenicity and the immune responses of the host were described for several species of Pasteurellaceae. Neutralizing antibodies were shown to significantly reduce the cytotoxic activity of RTX toxins. They constitute a valuable strategy in the development of immuno-prophylactics against several animal diseases caused by pathogenic species of Pasteurellaceae. Although many RTX toxins possess cytotoxic and hemolytic activities toward a broad range of cells and erythrocytes, respectively, a few RTX toxins were shown to have cytotoxic activity only against cells of specific hosts and/or show cell-type specificity. Further evidence exists that RTX toxins play a potential role in host specificity of certain pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES This in vitro study was established to examine whether visfatin thought to be a link between periodontitis and obesity is produced by periodontal ligament (PDL) cells and, if so, whether its synthesis is modulated by microbial and/or biomechanical signals. MATERIALS AND METHODS PDL cells seeded on BioFlex® plates were exposed to the oral pathogen Fusobacterium nucleatum ATCC 25586 and/or subjected to biomechanical strain for up to 3 days. Gene expression of visfatin and toll-like receptors (TLR) 2 and 4 was analyzed by RT-PCR, visfatin protein synthesis by ELISA and immunocytochemistry, and NFκB nuclear translocation by immunofluorescence. RESULTS F. nucleatum upregulated the visfatin expression in a dose- and time-dependent fashion. Preincubation with neutralizing antibodies against TLR2 and TLR4 caused a significant inhibition of the F. nucleatum-upregulated visfatin expression at 1 day. F. nucleatum stimulated the NFκB nuclear translocation. Biomechanical loading reduced the stimulatory effects of F. nucleatum on visfatin expression at 1 and 3 days and also abrogated the F. nucleatum-induced NFκB nuclear translocation at 60 min. Biomechanical loading inhibited significantly the expression of TLR2 and TLR4 at 3 days. The regulatory effects of F. nucleatum and/or biomechanical loading on visfatin expression were also observed at protein level. CONCLUSIONS PDL cells produce visfatin, and this production is enhanced by F. nucleatum. Biomechanical loading seems to be protective against the effects of F. nucleatum on visfatin expression. CLINICAL RELEVANCE Visfatin produced by periodontal tissues could play a major role in the pathogenesis of periodontitis and the interactions with obesity and other systemic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protection against malaria can be achieved by induction of a strong CD8(+) T-cell response against the Plasmodium circumsporozoite protein (CSP), but most subunit vaccines suffer from insufficient memory responses. In the present study, we analyzed the impact of postimmunization sporozoite challenge on the development of long-lasting immunity. BALB/c mice were immunized by a heterologous prime/boost regimen against Plasmodium berghei CSP that induces a strong CD8(+) T-cell response and sterile protection, which is short-lived. Here, we show that protective immunity is prolonged by a sporozoite challenge after immunization. Repeated challenges induced sporozoite-specific antibodies that showed protective capacity. The numbers of CSP-specific CD8(+) T cells were not substantially enhanced by sporozoite infections; however, CSP-specific memory CD8(+) T cells of challenged mice displayed a higher cytotoxic activity than memory T cells of immunized-only mice. CD4(+) T cells contributed to protection as well; but CD8(+) memory T cells were found to be the central mediator of sterile protection. Based on these data, we suggest that prolonged protective immunity observed after immunization and infection is composed of different antiparasitic mechanisms including CD8(+) effector-memory T cells with increased cytotoxic activity as well as CD4(+) memory T cells and neutralizing antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE In leukemic cutaneous T-cell lymphoma (L-CTCL), malignant T cells accumulate in the blood and give rise to widespread skin inflammation. Patients have intense pruritus, increased immunoglobulin E (IgE), and decreased T-helper (TH)-1 responses, and most die from infection. Depleting malignant T cells while preserving normal immunity is a clinical challenge. L-CTCL has been variably described as a malignancy of regulatory, TH2 and TH17 cells. EXPERIMENTAL DESIGN We analyzed phenotype and cytokine production in malignant and benign L-CTCL T cells, characterized the effects of malignant T cells on healthy T cells, and studied the immunomodulatory effects of treatment modalities in patients with L-CTCL. RESULTS Twelve out of 12 patients with L-CTCL overproduced TH2 cytokines. Remaining benign T cells were also strongly TH2 biased, suggesting a global TH2 skewing of the T-cell repertoire. Culture of benign T cells away from the malignant clone reduced TH2 and enhanced TH1 responses, but separate culture had no effect on malignant T cells. Coculture of healthy T cells with L-CTCL T cells reduced IFNγ production and neutralizing antibodies to interleukin (IL)-4 and IL-13 restored TH1 responses. In patients, enhanced TH1 responses were observed following a variety of treatment modalities that reduced malignant T-cell burden. CONCLUSIONS A global TH2 bias exists in both benign and malignant T cells in L-CTCL and may underlie the infectious susceptibility of patients. TH2 cytokines from malignant cells strongly inhibited TH1 responses. Our results suggest that therapies that inhibit TH2 cytokine activity, by virtue of their ability to improve TH1 responses, may have the potential to enhance both anticancer and antipathogen responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Statins have anti-inflammatory and immunomodulatory properties in addition to lipid-lowering effects. OBJECTIVES To report the 12-month extension of a phase II trial evaluating the efficacy, safety and tolerability of atorvastatin 40 mg/d added to interferon beta-1b (IFNB-1b) in relapsing-remitting multiple sclerosis (RRMS). METHODS In the randomized, multicenter, parallel-group, rater-blinded core study, 77 RRMS patients started IFNB-1b. At month three they were randomized 1∶1 to receive atorvastatin 40 mg/d or not in addition to IFNB-1b until month 15. In the subsequent extension study, patients continued with unchanged medication for another 12 months. Data at study end were compared to data at month three of the core study. RESULTS 27 of 72 patients that finished the core study entered the extension study. 45 patients were lost mainly due to a safety analysis during the core study including a recruitment stop for the extension study. The primary end point, the proportion of patients with new lesions on T2-weighted images was equal in both groups (odds ratio 1.926; 95% CI 0.265-14.0007; p = 0.51). All secondary endpoints including number of new lesions and total lesion volume on T2-weighted images, total number of Gd-enhancing lesions on T1-weighted images, volume of grey and white matter, EDSS, MSFC, relapse rate, number of relapse-free patients and neutralizing antibodies did not show significant differences either. The combination therapy was well tolerated. CONCLUSIONS Atorvastatin 40 mg/day in addition to IFNB-1b did not have any beneficial effects on RRMS compared to IFNB-1b monotherapy over a period of 24 months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT(1) receptor agonistic autoantibodies (AT(1)-AAs) that contribute to the disease features. However, the exact role of AT(1)-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT(1) receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT(1)-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT(1)-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT(1)-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT(1)-AA-induced placental damage. Our findings highlight AT(1)-AAs as important therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rubella virus (RV) typically causes a mild childhood illness, but complications can result from both viral and immune-mediated pathogenesis. RV can persist in the presence of neutralizing antibodies, suggesting that cell-mediated immune responses may be necessary for viral clearance. However, the molecular determinants recognized by RV-specific T-cells have not been identified. Using recombinant proteins which express the entire RV structural open reading frame in proliferation assays with lymphocytes of RV-immune individuals, domains which elicit major histocompatibility complex class II-restricted helper T-cells were identified. Synthetic peptides representing these domains were used to define specific epitopes. Two immunodominant domains were mapped to the capsid protein sequence C$\sb1$-C$\sb{29}$ and the E1 glycoprotein sequence E1$\sb{202}$-E1$\sb{283}.$ RV-specific MHC class I-restricted cytotoxic T lymphocytes (CTLs) were identified using a chromium-release assay with infected fibroblasts as target cells. An infectious Sindbis virus vector expressing each of the RV structural proteins identified the capsid, E2 and E1 proteins as targets of CTLs. Specific CTL epitopes were mapped within the previously identified immunodominant domains. This study identified domains of the RV structural proteins that may be beneficial for development of a synthetic vaccine, and provides normative data on RV-specific T-cell responses that should enhance our ability to understand RV persistence and associated complications. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viral infection is known to play a role in type I diabetes, but there is a paucity of information on the role of viruses in type 2 diabetes. This research examined the seroprevalence of selected viruses in a group of predominantly Mexican-American patients with End Stage Renal Disease (ESRD). Using a case control design, patients with type 2 diabetes were compared with a group of non-diabetic controls. ^ One hundred and thirteen patients, 83 with type 2 diabetes and 30 controls without diabetes, underwent hemodialysis at the same chronic dialysis facility in San Antonio, Texas. AD subjects were tested for IgG, IgM, and neutralizing antibodies against Coxsackie B viruses (CBV), and IgG and IgM antibodies against cytomegalovirus (CMV) and parvovirus B19 (PVB19). Hepatitis B virus antigen (HBVAg), Hepatitis B virus antibody (HBVAb), Hepatitis C virus antibody (HCVAb), and Rubella (IgG) were also measured. A subset of 91 patients, 66 with diabetes and 25 controls, were tested bimonthly for six months. There was a significant difference (P = 0.04) in the seroprevalence of IgG antibodies to CMV between patients with type 2 diabetes (98%) and non-diabetic controls (87%) in the initial sample (OR = 6.2, 95% CI:1.1–36.0). A greater seroprevalence of CMV IgG antibodies was observed over the six month period among patients with type 2 diabetes (M) compared to controls (84%). This difference was also statistically (P < 0.03), with a greater odds ratio (OR = 12.4, 95% CI: 1.3–116.9), but with larger confidence interval related to the small number of subjects. However, when adjusted for age by logistic regression analysis there was no difference between the groups (OR = 1). ^ After one sample, there was a greater seroprevalence of HCVAb in the group without diabetes (28%), compared to those with type 2 diabetes (10%) (P = 0.04). This difference was no longer significant when adjusted for patient age. The prevalence of antibodies to PVB19, HBSAg, HBV, and Rubella was not significantly different in patients with type 2 diabetes and controls. There were significantly more vascular complications (P < 0.02) among patients with diabetes. ^ These results indicate that the significant associations observed in this population between viral infection with CMV, HCV, and type 2 diabetes are confounded by age. Accelerated atherosclerosis has been associated with age, diabetes, as well as CMV. Latent infection may be a factor that links these processes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The study of HIV-1 rapid progressors has been limited to specific case reports. Nevertheless, identification and characterization of the viral and host factors involved in rapid progression are crucial when attempting to uncover the correlates of rapid disease outcome. DESIGN: We carried out comparative functional analyses in rapid progressors (n = 46) and standard progressors (n = 46) early after HIV-1 seroconversion (≤1 year). The viral traits tested were viral replicative capacity, co-receptor usage, and genomic variation. Host CD8 T-cell responses, humoral activity, and HLA immunogenetic markers were also determined. RESULTS: Our data demonstrate an unusual convergence of highly pathogenic HIV-1 strains in rapid progressors. Compared with standard progressors, rapid progressor viral strains show higher in-vitro replicative capacity (81.5 vs. 67.9%; P = 0.025) and greater X4/DM co-receptor usage (26.3 vs. 2.8%; P = 0.006) in early infection. Limited or absent functional HIV-1 CD8 T-cell responses and neutralizing activity were measured in rapid progressors. Moreover, the increase in common HLA allele-restricted CD8 T-cell escape mutations in rapid progressors acts as a signature of uncontrolled HIV-1 replication and early impairment of adaptive cellular responses. CONCLUSION: Our data support a dominant role for viral factors in rapid progressors. Robust HIV-1 replication and intrinsic viral properties limit host adaptive immune responses, thus driving rapid disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+) T cells and/or CD4(-) cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/-) CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS)-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/-) CD4 T cell accumulation in colonic lamina propria (cLP) was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/-) mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/-) CD45RB(high) CD4 T cells into RAG(-/-) hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.