966 resultados para neutral detergent soluble carbohydrates
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. , when supplemented to a basal diet (Tifton-85 hay sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect ( > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich , essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
Resumo:
Two experiments in vitro were conducted to evaluate four Egyptian forage legume browses, i.e., leaves of prosopis (Prosopis juliflora), acacia (Acacia saligna), atriplex (A triplex halimus), and leucaena (Leucaena leucocephala), in comparison with Tifton (Cynodon sp.) grass hay for their gas production, methanogenic potential, and ruminal fermentation using a semi-automatic system for gas production (first experiment) and for ruminal and post ruminal protein degradability (second experiment). Acacia and leucaena showed pronounced methane inhibition compared with Tifton, while prosopis and leucaena decreased the acetate:propionate ratio (P<0.01). Acacia and leucaena presented a lower (P<0.01) ruminal NH3-N concentration associated with the decreasing (P<0.01) ruminal protein degradability. Leucaena, however, showed higher (P<0.01) intestinal protein digestibility than acacia. This study suggests that the potential methanogenic properties of leguminous browses may be related not only to tannin content, but also to other factors.
Resumo:
The objective of this study was to evaluate the effects of adding alkalis on the fermentative pattern, aerobic stability and nutritive value of the sugarcane silage. A completely randomized design with 6 additives in two concentrations (1 or 2%), plus a control group, totalizing 13 treatments [(6x2)+1] with four replications, was used. The additives were sodium hydroxide (NaOH), limestone (CaCO3), urea (CO(NH2)(2)), sodium bicarbonate (NaHCO3), quicklime (CaO) and hydrated lime (Ca(OH)(2)). The material was ensiled in 52 laboratory silos using plastic buckets with 12 L of capacity. Silos were opened 60 days after ensiling, when organic acids concentration, aerobic stability and chemical composition were determined. The Relative Biological Efficiency (RBE) was calculated by the slope ratio method, using the data obtained from ratio between desirable and undesirable silage products, according to the equation: D/U ratio = [lactic/(ethanol + acetic + butyric)]. All additives affected dry matter, crude protein, acid detergent fiber, neutral detergent fiber contents and buffering capacity. Except for urea and quicklime, all additives increased the in vitro dry matter digestibility. In general, these additives altered the fermentative pattern of sugarcane silage, inhibiting alcoholic fermentation and improving lactic acid production. The additive that showed the best RBE in relation to sodium hydroxide (100%) was limestone (89.4%). The RBE values of urea, sodium bicarbonate and hydrated lime were 49.2%, 47.7% and 34.3%, respectively.
Resumo:
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200A degrees C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190A degrees C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.
Resumo:
Leucaena leucocephala (LEU) and three under-utilized tanniferous legumes, Styzolobium aterrimum L. (STA), Styzolobium deeringianum (STD), and Mimosa caesalpiniaefolia Benth (MIC) were chemically characterized and the biological activity of tannins was evaluated using in vitro simulated ruminal fermentation through tannin-binding polyethylene glycol (PEG) and compared with a non-tanniferous tropical grass hay, Cynodon spp. (CYN). The Hohenheim gas test was used and gas production (GP) was recorded at 4, 8, 12, 24, 32, 48, 56, 72, 80, and 96 h incubation with and without PEG. Kinetic parameters were estimated by an exponential model. STA, STD, and LEU contained higher (P < 0.05) crude protein than MIC, which had greater neutral detergent fibre and acid detergent fibre. Total phenols, total tannins, and condensed tannins (CT) were consistently the highest in MIC. Gas production was the lowest from MIC (P < 0.05) and the highest in LEU and STA. MIC + PEG largely reduced (P < 0.05) the lag phase and the fractional rate of fermentation and increased potential GP. Kinetic parameters of STA + PEG and LEU + PEG were not affected. LEU + PEG produced greater gas increment (P < 0.05) than STD + PEG, although both legumes had the same CT. All legumes except MIC were more extensively degraded than CYN. However, fermentation of the legumes was differently affected by the presence and proportions of CT, indigestible fibre or both.
Resumo:
The objective in this study was to determine growth, carcass characteristics, chemical composition and fatty acid profile of the longissimus dorsi of crossbred Boer x Saanen kids fed castor oil. Twenty-four kids (12 males and 12 females) were assigned in a randomized complete block design with two treatments and twelve replications. Blocks were defined according to weight, gender and initial age of animals for the evaluation of performance. The experimental treatments consisted of two diets containing 900 g concentrate/kg: a control diet (without addition of oil) and another containing castor oil at 30 g/kg (on a dry matter basis). After they reached an average body weight of 25 kg, males were slaughtered for the evaluation of carcass characteristics, chemical composition and fatty acid profile of the longissimus dorsi muscle. The addition of castor oil in the diet did not affect the intake of dry matter, crude protein and neutral detergent fiber; the average daily gain; and feed conversion, but increased the ether extract intake. No difference was observed for the carcass characteristics, chemical composition of the meat, concentration of C18:2 cis-9, trans-11 (CLA) and total concentration of saturated, monounsaturated and polyunsaturated fatty acids and their relations; however, there was increase in the concentrations of C18:2 trans-10, cis-12 (CLA) and C20:4 omega-6. The addition of castor oil to the diet of crossbred Boer x Saanen kids containing a high content of concentrate did not promote benefit to the characteristics evaluated.
Resumo:
The objective of this study was to evaluate the chemical composition and dry matter in vitro digestibility of stem, leaf, straw, cob and kernel fractions of eleven corn (Zea mays) cultivars, harvested at two cutting heights. The experiment was designed as randomized blocks, with three replicates, in a 2 × 11 factorial arrangement (eleven cultivars and two cutting heights). The corn cultivars evaluated were D 766, D 657, D 1000, P 3021, P 3041, C 805, C 333, AG 5011, FOR 01, CO 9621 and BR 205, harvested at a low cutting height (5 cm above ground) and a high cutting height (5 cm below the first ear insertion). Cutting height influenced the dry matter content of the stem fraction, which was lower (23.95%) in plants harvested at the low, than in plants harvested at the high cutting height (26.28%). The kernel fraction had the highest dry matter in vitro digestibility (85.13%), while cultivars did not differ between each other. Cob and straw were the fractions with the highest level of neutral detergent fiber (80.74 and 79.77%, respectively) and the lowest level of crude protein (3.84% and 3.69%, respectively). The leaf fraction had the highest crude protein content, both for plants of low and high cuttings (15.55% and 16.20%, respectively). The increase in the plant cutting height enhanced the dry matter content and dry matter in vitro digestibility of stem fraction, but did not affect the DM content of the leaf fraction.
Resumo:
Dry matter yield and chemical composition of forage grasses harvested from an area degraded by urban solid waste deposits were evaluated. A split-plot scheme in a randomized block design with four replicates was used, with five grasses in the plots and three harvests in the subplots. The mineral content and extraction and heavy metal concentration were evaluated in the second cut, using a randomized block design with five grasses and four replicates. The grasses were Brachiaria decumbens cv. Basilisk, Brachiaria ruziziensis, Brachiaria brizantha cv. Marandu and cv. Xaraés, and Panicum maximum cv. Tanzânia, cut at 42 days of regrowth. The dry matter yield per cut reached 1,480 kg ha-1; the minimum crude protein content was 9.5% and the average neutral detergent fiber content was 62.3%. The dry matter yield of grasses was satisfactory, and may be an alternative for rehabilitating areas degraded by solid waste deposits. The concentration of heavy metals in the plants was below toxicity levels; the chemical composition was appropriate, except for phosphorus. The rehabilitated areas may therefore be used for grazing.
Resumo:
The objective of this study was to evaluate the chemical composition, fermentation patterns and aerobic stability of sugarcane silages with addition of amino acid production (monosodium glutamate) by-product (APB) and microbial inoculants. Mature sugarcane was chopped and ensiled in laboratory silos (n = 4/treatment) without additives (control) and with APB (10 g/kg), Pioneer 1174® (PIO, 1.0 mg/kg, Lactobacillus plantarum + Streptoccoccus faecium, Pioneer), Lalsil Cana (2.0 mg/kg, Lactobacillus buchineri, Lallemand) or Mercosil Maís 11C33® (1.0 mg/kg, Lactobacillus buchineri + Lactobacillus plantarum + Streptoccoccus faecium, Timac Agro). Fresh silage and silage liquor samples were obtained to assess pH, chemical composition and organic acid concentrations. Silage temperature was recorded throughout seven days to evaluate aerobic stability. The addition of APB decreased lactic acid levels, increased pH and N-NH3 and did not alter ethanol, acetic and butyric acids concentrations or dry matter (DM) losses. Microbial inoculants enhanced acetic acid levels, although only Pioneer 1174® and Mercosil Maís 11C33® lowered ethanol, butyric acid and DM losses. The addition of APB increased CP content and did not modify DM, soluble carbohydrates contents or in vitro dry matter digestibility. Additives did not alter silage maximum temperature or temperature increasing rate; however, Pioneer 1174® and Mercosil Maís 11C33® increased the time elapsed to reach maximum temperature. Monosodium glutamate production by-product does not alter fermentation patterns or aerobic stability of sugarcane silages, whereas homofermentative bacteria can provide silages of good quality.
Resumo:
Four crossbred geldings were used in a randomized blocks experimental design. The objective was to study the use of the internal markers indigestible cellulose (iCEL) and indigestible lignin (iLIG), obtained in situ (cattle) or in vivo (equine) to predict nutrient apparent digestibility in horses. Treatments consisted of different methodologies to determine digestibility: direct method with total feces collection (TC), and indirect method using internal markers iCEL and iLIG obtained either by in situ incubation in bovine rumen or in vivo (IV) using the mobile nylon bag (MNB) technique in horses. Feces production was 2.80 kg in DM, and average recovery rate (p > 0.05) was 101%. Nutrient digestibility coefficient (p > 0.05) estimates were adequately predicted by iCEL and iLIG, obtained in situ or in vivo, with average values of 52.63, 54.17, 64.90, 43.73 and 98.28% for dry matter, organic matter, crude protein, neutral detergent fiber and starch, respectively. It can be concluded that iCEL and iLIG may be obtained in vivo by MNB in horses consuming a forage-concentrate diet, to predict nutrient digestibility coefficients.
Resumo:
The experiment was conducted to evaluate the bromatological characteristics and the in vitro digestibility of four sugarcane varieties, subjected or not to hydrolysis, with quicklime. A completely randomized design was employed with three replications arranged in a 4 × 2 factorial scheme, with four sugarcane varieties (SP 52454, RB 867515, RB 855536 and IAC 862480), hydrolyzed or not. There was significant effect on brix (p < 0.05) and industrial fiber (p < 0.05), and IAC 862480 variety had the lowest levels of industrial fiber. There were no significant difference (p > 0.05) in neutral detergent fiber, acid detergent fiber and lignin levels among the sugarcane varieties under analysis and for the sugarcanes, hydrolyzed or not. The use of sugarcane hydrolysis with 1% quicklime improves the in vitro digestibility of NDF and ADF, regardless of the variety studied. Hydrolysis with 1% quicklime did not alter the sugarcane chemical composition.