951 resultados para neural progenitor cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Remyelination of focal areas of the central nervous system (CNS) in animals can be achieved by transplantation of glial cells, yet the source of these cells in humans to similarly treat myelin disorders is limited at present to fetal tissue. Multipotent precursor cells are present in the CNS of adult as well as embryonic and neonatal animals and can differentiate into lineage-restricted progenitors such as oligodendroglial progenitors (OPs). The OPs present in adults have a different phenotype from those seen in earlier life, and their potential role in CNS repair remains unknown. To gain insights into the potential to manipulate the myelinating capacity of these precursor and/or progenitor cells, we generated a homogenous culture of OPs from neural precursor cells isolated from adult rat subependymal tissues. Phenotypic characterization indicated that these OPs resembled neonatal rather than adult OPs and produced robust myelin after transplantation. The ability to generate such cells from the adult brain therefore opens an avenue to explore the potential of these cells for repairing myelin disorders in adulthood.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neurons undergoing targeted photolytic cell death degenerate by apoptosis. Clonal, multipotent neural precursor cells were transplanted into regions of adult mouse neocortex undergoing selective degeneration of layer II/III pyramidal neurons via targeted photolysis. These precursors integrated into the regions of selective neuronal death; 15 ± 7% differentiated into neurons with many characteristics of the degenerated pyramidal neurons. They extended axons and dendrites and established afferent synaptic contacts. In intact and kainic acid-lesioned control adult neocortex, transplanted precursors differentiated exclusively into glia. These results suggest that the microenvironmental alterations produced by this synchronous apoptotic neuronal degeneration in adult neocortex induced multipotent neural precursors to undergo neuronal differentiation which ordinarily occurs only during embryonic corticogenesis. Studying the effects of this defined microenvironmental perturbation on the differentiation of clonal neural precursors may facilitate identification of factors involved in commitment and differentiation during normal development. Because photolytic degeneration simulates some mechanisms underlying apoptotic neurodegenerative diseases, these results also suggest the possibility of neural precursor transplantation as a potential cell replacement or molecular support therapy for some diseases of neocortex, even in the adult.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A hierarchical order of gene expression has been proposed to control developmental events in hematopoiesis, but direct demonstration of the temporal relationships between regulatory gene expression and differentiation has been difficult to achieve. We modified a single-cell PCR method to detect 2-fold changes in mRNA copies per cell (dynamic range, 250–250,000 copies/cell) and used it to sequentially quantitate gene expression levels as single primitive (CD34+,CD38−) progenitor cells underwent differentiation to become erythrocytes, granulocytes, or monocyte/macrophages. Markers of differentiation such as CD34 or cytokine receptor mRNAs and transcription factors associated with their regulation were assessed. All transcription factors tested were expressed in multipotent progenitors. During lineage-specific differentiation, however, distinct patterns of expression emerged. SCL, GATA-2, and GATA-1 expression sequentially extinguished during erythroid differentiation. PU.1, AML1B, and C/EBPα expression profiles and their relationship to cytokine receptor expression in maturing granulocytes could be distinguished from similar profiles in monocytic cells. These data characterize the dynamics of gene expression accompanying blood cell development and define a signature gene expression pattern for specific stages of hematopoietic differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adhesive mechanisms allowing hematopoietic progenitor cells (HPC) homing to the bone marrow (BM) after BM transplantation are poorly understood. We investigated the role of endothelial selectins and vascular cell adhesion molecule-1 (VCAM-1) in this process. Lethally irradiated recipient mice deficient in both P-and E-selectins (P/E−/−), reconstituted with minimal numbers (≤5 × 104) of wild-type BM cells, poorly survived the procedure compared with wild-type recipients. Excess mortality in P/E−/− mice, after a lethal dose of irradiation, was likely caused by a defect of HPC homing. Indeed, we observed that the recruitment of HPC to the BM was reduced in P/E−/− animals, either splenectomized or spleen-intact. Homing into the BM of P/E−/− recipient mice was further compromised when a function-blocking VCAM-1 antibody was administered. Circulating HPC, 14 hr after transplantation, were greatly increased in P/E−/− mice treated with anti-VCAM-1 compared with P/E−/− mice treated with just IgG or wild-type mice treated with either anti-VCAM-1 or IgG. Our results indicate that endothelial selectins play an important role in HPC homing to the BM. Optimal recruitment of HPC after lethal doses of irradiation requires the combined action of both selectins and VCAM-1 expressed on endothelium of the BM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bcl-2, which can both reduce apoptosis and retard cell cycle entry, is thought to have important roles in hematopoiesis. To evaluate the impact of its ubiquitous overexpression within this system, we targeted expression of the human bcl-2 gene in mice by using the promoter of the vav gene, which is active throughout this compartment but rarely outside it. The vav-bcl-2 transgene was expressed in essentially all nucleated cells of hematopoietic tissues but not notably in nonhematopoietic tissues. Presumably because of enhanced cell survival, the mice displayed increases in myeloid cells as well as a marked elevation in B and T lymphocytes. The spleen was enlarged and the lymphoid follicles expanded. Although total thymic cellularity was normal, T cell development was altered: cells at the very immature and most mature stages were increased, whereas those at the intermediate stage were decreased. Unexpectedly, blood platelets were reduced by half, suggesting that their production from megakaryocytes is regulated by the Bcl-2 family. Colony formation by myeloid progenitor cells in vitro remained cytokine dependent, and the frequency of most progenitor and preprogenitor cells was normal. Macrophage progenitors were less frequent and yielded smaller colonies, however, perhaps reflecting inhibitory effects of Bcl-2 on cell cycling in specific lineages. After irradiation or factor deprivation, Bcl-2 markedly enhanced clonogenic survival of all tested progenitor and preprogenitor cells. Thus, Bcl-2 has multiple effects on the hematopoietic system. These mice should help to further clarify the role of apoptosis in the development and homeostasis of this compartment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hematopoiesis depends on a pool of quiescent hematopoietic stem/progenitor cells. When exposed to specific cytokines, a portion of these cells enters the cell cycle to generate an amplified progeny. Myeloblastin (MBN) initially was described as involved in proliferation of human leukemia cells. The granulocyte colony-stimulating factor (G-CSF), which stimulates the proliferation of granulocytic precursors, up-regulates MBN expression. Here we show that constitutive overexpression of MBN confers factor-independent growth to murine bone marrow-derived Ba/F3/G-CSFR cells. Our results point to MBN as a G-CSF responsive gene critical to factor-independent growth and indicate that expression of the G-CSF receptor is a prerequisite to this process. A 91-bp MBN promoter region containing PU.1, C/EBP, and c-Myb binding sites is responsive to G-CSF treatment. Although PU.1, C/EBP, and c-Myb transcription factors all were critical for expression of MBN, its up-regulation by G-CSF was associated mainly with PU.1. These findings suggest that MBN is an important target of PU.1 and a key protease for factor-independent growth of hematopoietic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cells of most tissues require adhesion to a surface to grow. However, for hematopoietic cells, both stimulation and inhibition of proliferation by adhesion to extracellular matrix components have been described. Furthermore, it has been suggested that progenitor cells from chronic myelogenous leukemia show decreased β1 integrin-mediated adhesion to fibronectin, resulting in increased proliferation and abnormal trafficking. However, we show here that the chronic myelogenous leukemia-specific fusion protein p210bcr/abl stimulates the expression of α5β1 integrins and induces adhesion to fibronectin when expressed in the myeloid cell line 32D. Moreover, proliferation of both p210bcr/abl-transfected 32D (32Dp210) cells and untransfected 32D cells is stimulated by immobilized fibronectin. Cell cycle analysis revealed that nonadherent 32D and 32Dp210 cells are arrested in late G1 or early S phase, whereas the adherent fractions continue cycling. Although both adherent and nonadherent p210bcr/abl-transfected and parental 32D cells express equal amounts of cyclin A, a protein necessary for cell cycle progression at the G1/S boundary, cyclin A complexes immunoprecipitated from 32D cells cultured on immobilized fibronectin were found to be catalytically inactive in nonadherent but not in adherent cells. In addition, as compared with untransfected 32D cells, cyclin A immunoprecipitates from 32Dp210 cells exhibited a greatly elevated kinase activity and remained partially active irrespective of the adhesion status. The lack of cyclin A/cyclin-dependent kinase (CDK) 2 activity in nonadherent 32D cells appeared to result from increased expression and cyclin A complex formation of the CDK inhibitor p27Kip1. Taken together, our results indicate that adhesion stimulates cell cycle progression of hematopoietic cells by down-regulation of p27Kip1, resulting in activation of cyclin A/CDK2 complexes and subsequent transition through the G1/S adhesion checkpoint.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Normal mouse marrow cells were stimulated by stem cell factor (SCF) to form dispersed or multicentric blast colonies containing progenitor cells committed to various hematopoietic lineages. Combination of the eosinophil-specific regulator interleukin 5 with SCF increased the frequency of colonies containing eosinophil-committed progenitor cells with multicentric but not dispersed blast colonies. Combination of thrombopoietin with SCF increased the frequency of colonies containing megakaryocyte-committed progenitor cells with both types of blast colony. Neither interleukin 5 nor thrombopoietin significantly altered the number or total cell content of blast colonies or progenitor cell numbers in blast colonies from those stimulated by SCF alone. No correlation was observed between total progenitor cell content and the presence or absence of either eosinophil or megakaryocyte progenitors in either type of blast colony. The data argue against a random process as being responsible for the formation of particular committed progenitor cells or the possibility that lineage-specific regulators merely enhance survival of such committed progenitor cells formed in developing blast colonies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendritic cell (DC) differentiation from human CD34+ hematopoietic progenitor cells (HPCs) can be triggered in vitro by a combination of cytokines consisting of stem cell factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor α. The immune response regulatory cytokines, IL-4 and IL-13, promote DC maturation from HPCs, induce monocyte-DC transdifferentiation, and selectively up-regulate 15-lipoxygenase 1 (15-LO-1) in blood monocytes. To gain more insight into cytokine-regulated eicosanoid production in DCs we studied the effects of IL-4/IL-13 on LO expression during DC differentiation. In the absence of IL-4, DCs that had been generated from CD34+ HPCs in response to stem cell factor/granulocyte-macrophage colonystimulating factor/tumor necrosis factor α expressed high levels of 5-LO and 5-LO activating protein. However, a small subpopulation of eosinophil peroxidase+ (EOS-PX) cells significantly expressed 15-LO-1. Addition of IL-4 to differentiating DCs led to a marked and selective down-regulation of 5-LO but not of 5-LO activating protein in DCs and in EOS-PX+ cells and, when added at the onset of DC differentiation, also prevented 5-LO up-regulation. Similar effects were observed during IL-4- or IL-13-dependent monocyte-DC transdifferentiation. Down-regulation of 5-LO was accompanied by up-regulation of 15-LO-1, yielding 15-LO-1+ 5-LO-deficient DCs. However, transforming growth factor β1 counteracted the IL-4-dependent inhibition of 5-LO but only minimally affected 15-LO-1 up-regulation. Thus, transforming growth factor β1 plus IL-4 yielded large mature DCs that coexpress both LOs. Localization of 5-LO in the nucleus and of 15-LO-1 in the cytosol was maintained at all cytokine combinations in all DC phenotypes and in EOS-PX+ cells. In the absence of IL-4, major eicosanoids of CD34+-derived DCs were 5S-hydroxyeicosatetraenoic acid (5S-HETE) and leukotriene B4, whereas the major eicosanoids of IL-4-treated DCs were 15S-HETE and 5S-15S-diHETE. These actions of IL-4/IL-13 reveal a paradigm of eicosanoid formation consisting of the inhibition of one and the stimulation of another LO in a single leukocyte lineage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that when telencephalic neural progenitors are briefly exposed to bone morphogenetic protein 2 (BMP2) in culture, their developmental fate is changed from neuronal cells to astrocytic cells. BMP2 significantly reduced the number of cells expressing microtubule-associated protein 2, a neuronal marker, and cells expressing nestin, a marker for undifferentiated neural precursors, but BMP2 increased the number of cells expressing S100-β, an astrocytic marker. In telencephalic neuroepithelial cells, BMP2 up-regulated the expression of negative helix–loop–helix (HLH) factors Id1, Id3, and Hes-5 (where Hes is homologue of hairy and Enhancer of Split) that inhibited the transcriptional activity of neurogenic HLH transcription factors Mash1 and neurogenin. Ectopic expression of either Id1 or Id3 (where Id is inhibitor of differentiation) inhibited neurogenesis of neuroepithelial cells, suggesting an important role for these HLH proteins in the BMP2-mediated changes in the neurogenic fate of these cells. Because gliogenesis in the brain and spinal cord, derived from implanted neural stem cells or induced by injury, is responsible for much of the failure of neuronal regeneration, this work may lead to a therapeutic strategy to minimize this problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wnt1 signaling has been implicated as one factor involved in neural crest-derived melanocyte (NC-M) development. Mice deficient for both Wnt1 and Wnt3a have a marked deficiency in trunk neural crest derivatives including NC-Ms. We have used cell lineage-directed gene targeting of Wnt signaling genes to examine the effects of Wnt signaling in mouse neural crest development. Gene expression was directed to cell lineages by infection with subgroup A avian leukosis virus vectors in lines of transgenic mice that express the retrovirus receptor tv-a. Transgenic mice with tva in either nestin-expressing neural precursor cells (line Ntva) or dopachrome tautomerase (DCT)-expressing melanoblasts (line DCTtva) were analyzed. We overstimulated Wnt signaling in two ways: directed gene transfer of Wnt1 to Ntva+ cells and transfer of β-catenin to DCTtva+ NC-M precursor cells. In both methods, NC-M expansion and differentiation were effected. Significant increases were observed in the number of NC-Ms [melanin+ and tyrosinase-related protein 1 (TYRP1)+ cells], the differentiation of melanin− TYRP1+ cells to melanin+ TYRP1+ NC-Ms, and the intensity of pigmentation per NC-M. These data are consistent with Wnt1 signaling being involved in both expansion and differentiation of migrating NC-Ms in the developing mouse embryo. The use of lineage-directed gene targeting will allow the dissection of signaling molecules involved in NC development and is adaptable to other mammalian developmental systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low level of amphotropic retrovirus-mediated gene transfer into human hematopoietic stem cells (HSC) has been a major impediment to gene therapy for hematopoietic diseases. In the present study, we have examined amphotropic retrovirus receptor (amphoR) and ecotropic retrovirus receptor mRNA expression in highly purified populations of mouse and human HSC. Murine HSC with low to undetectable levels of amphoR mRNA and relatively high levels of ecotropic retrovirus receptor mRNA were studied. When these HSC were analyzed simultaneously for ecotropic and amphotropic retrovirus transduction, ecotropic provirus sequences were detected in 10 of 13 long-term repopulated animals, while amphotropic proviral sequences were detected in only one recipient. A second distinct population of murine HSC were isolated that express 3-fold higher levels of amphoR mRNA. When these HSC were analyzed simultaneously for ecotropic and amphotropic retrovirus transduction, 11 of 11 repopulated mice contained ecotropic provirus and 6 of 11 contained amphotropic provirus sequences, a significant increase in the amphotropic retrovirus transduction (P = 0.018). These results indicate that, among the heterogeneous populations of HSC present in adult mouse bone marrow, the subpopulation with the highest level of amphoR mRNA is more efficiently transduced by amphotropic retrovirus. In a related study, we found low levels of human amphoR mRNA in purified populations of human HSC (CD34+ CD38-) and higher levels in committed progenitor cells (CD34+ CD38+). We conclude that the amphoR mRNA level in HSC correlates with amphotropic retrovirus transduction efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.