963 resultados para mutant protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proinflammatory cytokine interleukin 1 (IL-1) activates the transcription of many genes encoding acute phase and proinflammatory proteins, a function mediated primarily by the transcription factor NF-κB. An early IL-1 signaling event is the recruitment of the Ser/Thr kinase IRAK to the type I IL-1 receptor (IL-1RI). Here we describe the function of a previously identified IL-1 receptor subunit designated IL-1 receptor accessory protein (IL-1RAcP). IL-1 treatment of cells induces the formation of a complex containing both IL-1RI and IL-1RAcP. IRAK is recruited to this complex through its association with IL-1RAcP. Overexpression of an IL-1RAcP mutant lacking its intracellular domain, the IRAK-binding domain, prevented the recruitment of IRAK to the receptor complex and blocked IL-1-induced NF-κB activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several proteins secreted by enteric bacteria are thought to contribute to virulence by disturbing the signal transduction of infected cells. Here, we report that SopB, a protein secreted by Salmonella dublin, has sequence homology to mammalian inositol polyphosphate 4-phosphatases and that recombinant SopB has inositol phosphate phosphatase activity in vitro. SopB hydrolyzes phosphatidylinositol 3,4,5-trisphosphate, an inhibitor of Ca2+-dependent chloride secretion. In addition, SopB hydrolyzes inositol 1,3,4,5,6 pentakisphosphate to yield inositol 1,4,5,6-tetrakisphosphate, a signaling molecule that increases chloride secretion indirectly by antagonizing the inhibition of chloride secretion by phosphatidylinositol 3,4,5-trisphosphate [Eckmann, L., Rudolf, M. T., Ptasznik, A., Schultz, C., Jiang, T., Wolfson, N., Tsien, R., Fierer, J., Shears, S. B., Kagnoff, M. F., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14456–14460]. Mutation of a conserved cysteine that abolishes phosphatase activity of SopB results in a mutant strain, S. dublin SB c/s, with decreased ability to induce fluid secretion in infected calf intestine loops. Moreover, HeLa cells infected with S. dublin SB c/s do not accumulate high levels of inositol 1,4,5,6-tetrakisphosphate that are characteristic of wild-type S. dublin-infected cells. Therefore, SopB mediates virulence by interdicting inositol phosphate signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse CD1(mCD1) molecules have been reported to present two types of antigens: peptides or proteins and the glycolipid α-galactosylceramide. Here, we demonstrate that a protein antigen, chicken ovalbumin (Ova), must be processed to generate peptides presented by mCD1 to CD8+ T cells. The processing and mCD1-mediated presentation of chicken Ova depend on endosomal localization because inhibitors of endosomal acidification and endosomal recycling pathways block T cell reactivity. Furthermore, a cytoplasmic tail mutant of mCD1, which disrupts endosomal localization, has a greatly reduced capacity to present Ova to mCD1 restricted cells. Newly synthesized mCD1 molecules, however, are not required for Ova presentation, suggesting that molecules recycling from the cell surface are needed. Because of these data showing that mCD1 trafficks to endosomes, where it can bind peptides derived from exogenous proteins, we conclude that peptide antigen presentation by mCD1 is likely to be a naturally occurring phenomenon. In competition assays, α-galactosylceramide did not inhibit Ova presentation, and presentation of the glycolipid was not inhibited by excess Ova or the peptide epitope derived from it. This suggests that, although both lipid and peptide presentation may occur naturally, mCD1 may interact differently with these two types of antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse models show that congenital neural tube defects (NTDs) can occur as a result of mutations in the platelet-derived growth factor receptor-α gene (PDGFRα). Mice heterozygous for the PDGFRα-mutation Patch, and at the same time homozygous for the undulated mutation in the Pax1 gene, exhibit a high incidence of lumbar spina bifida occulta, suggesting a functional relation between PDGFRα and Pax1. Using the human PDGFRα promoter linked to a luciferase reporter, we show in the present paper that Pax1 acts as a transcriptional activator of the PDGFRα gene in differentiated Tera-2 human embryonal carcinoma cells. Two mutant Pax1 proteins carrying either the undulated-mutation or the Gln → His mutation previously identified by us in the PAX1 gene of a patient with spina bifida, were not or less effective, respectively. Surprisingly, Pax1 mutant proteins appear to have opposing transcriptional activities in undifferentiated Tera-2 cells as well as in the U-2 OS osteosarcoma cell line. In these cells, the mutant Pax1 proteins enhance PDGFRα-promoter activity whereas the wild-type protein does not. The apparent up-regulation of PDGFRα expression in these cells clearly demonstrates a gain-of-function phenomenon associated with mutations in Pax genes. The altered transcriptional activation properties correlate with altered protein–DNA interaction in band-shift assays. Our data provide additional evidence that mutations in Pax1 can act as a risk factor for NTDs and suggest that the PDGFRα gene is a direct target of Pax1. In addition, the results support the hypothesis that deregulated PDGFRα expression may be causally related to NTDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) kinase was studied for its roles in physiological responses to nutritional deprivation in Escherichia coli. A mutant lacking polyP kinase exhibited an extended lag phase of growth, when shifted from a rich to a minimal medium (nutritional downshift). Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, guanosine 5′-diphosphate 3′-diphosphate, increased in response to the nutritional downshift, but, unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The expression of an amino acid biosynthetic gene, hisG, was examined by using a transcriptional lacZ fusion. Although the mutant did not express the fusion in response to the nutritional downshift, Northern blot analysis revealed a significant increase of hisG-lacZ mRNA. Amino acids generated by intracellular protein degradation are very important for the synthesis of enzymes at the onset of starvation. In the wild type, the rate of protein degradation increased in response to the nutritional downshift whereas it did not in the mutant. Supplementation of amino acids at low concentrations to the minimal medium enabled the mutant to express the hisG-lacZ fusion. Thus, the impaired regulation of protein degradation results in the adaptation defect, suggesting that polyP kinase is required to stimulate protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During light-driven proton transport bacteriorhodopsin shuttles between two protein conformations. A large-scale structural change similar to that in the photochemical cycle is produced in the D85N mutant upon raising the pH, even without illumination. We report here that (i) the pKa values for the change in crystallographic parameters and for deprotonation of the retinal Schiff base are the same, (ii) the retinal isomeric configuration is nearly unaffected by the protein conformation, and (iii) preventing rotation of the C13—C14 double bond by replacing the retinal with an all-trans locked analogue makes little difference to the Schiff base pKa. We conclude that the direct cause of the conformational shift is destabilization of the structure upon loss of interaction of the positively charged Schiff base with anionic residues that form its counter-ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned and sequenced cDNA for human karyopherin β2, also known as transportin. In a solution binding assay, recombinant β2 bound directly to recombinant nuclear mRNA-binding protein A1. Binding was inhibited by a peptide representing A1’s previously characterized M9 nuclear localization sequence (NLS), but not by a peptide representing a classical NLS. As previously shown for karyopherin β1, karyopherin β2 bound to several nucleoporins containing characteristic peptide repeat motifs. In a solution binding assay, both β1 and β2 competed with each other for binding to immobilized repeat nucleoporin Nup98. In digitonin-permeabilized cells, β2 was able to dock A1 at the nuclear rim and to import it into the nucleoplasm. At low concentrations of β2, there was no stimulation of import by the exogenous addition of the GTPase Ran. However, at higher concentrations of β2 there was marked stimulation of import by Ran. Import was inhibited by the nonhydrolyzable GTP analog guanylyl imidodiphosphate by a Ran mutant that is unable to hydrolyze GTP and also by wheat germ agglutinin. Consistent with the solution binding results, karyopherin β2 inhibited karyopherin α/β1-mediated import of a classical NLS containing substrate and, vice versa, β1 inhibited β2-mediated import of A1 substrate, suggesting that the two import pathways merge at the level of docking of β1 and β2 to repeat nucleoporins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Null mutations at the misato locus of Drosophila melanogaster are associated with irregular chromosomal segregation at cell division. The consequences for morphogenesis are that mutant larvae are almost devoid of imaginal disk tissue, have a reduction in brain size, and die before the late third-instar larval stage. To analyze these findings, we isolated cDNAs in and around the misato locus, mapped the breakpoints of chromosomal deficiencies, determined which transcript corresponded to the misato gene, rescued the cell division defects in transgenic organisms, and sequenced the genomic DNA. Database searches revealed that misato codes for a novel protein, the N-terminal half of which contains a mixture of peptide motifs found in α-, β-, and γ-tubulins, as well as a motif related to part of the myosin heavy chain proteins. The sequence characteristics of misato indicate either that it arose from an ancestral tubulin-like gene, different parts of which underwent convergent evolution to resemble motifs in the conventional tubulins, or that it arose by the capture of motifs from different tubulin genes. The Saccharomyces cerevisiae genome lacks a true homolog of the misato gene, and this finding highlights the emerging problem of assigning functional attributes to orphan genes that occur only in some evolutionary lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized a nontoxic mutant of cholera toxin (CT) as a mucosal adjuvant in mice. The mutant CT was made by substitution of serine with phenylalanine at position 61 of the A subunit (S61F), which resulted in loss of ADP ribosyltransferase activity and toxicity. Mice were intranasally immunized with ovalbumin, tetanus toxoid, or influenza virus either alone or together with mutant CT S61F, native CT, or recombinant CT-B. Mice immunized with these proteins plus S61F showed high serum titers of protein-specific IgG and IgA antibodies that were comparable to those induced by native CT. Further, high protein-specific IgA antibody responses were observed in nasal and vaginal washes, saliva, and fecal extracts as well as increased numbers of IgG and IgA antibody forming cells in cervical lymph nodes and lung tissues of mice intranasally immunized with these proteins and S61F or native CT, but not with recombinant CT-B or protein alone. Both S61F and native CT enhanced the induction of ovalbumin-specific CD4+ T cells in lung and splenic tissues, and these T cells produced a Th2-type cytokine pattern of interleukin 4 (IL-4), IL-5, IL-6, and IL-10 as determined by analysis of secreted proteins and by quantitation of cytokine-specific mRNA. These results have shown that mutant CT S61F is an effective mucosal adjuvant when administrated intranasally and induces mucosal and systemic antibody responses which are mediated by CD4+ Th2-type cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈20-kDa C-terminal fragments (CTF) and ≈30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181–190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181–190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP⋅Rad was also reconverted to GTP⋅Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.