966 resultados para muscle stimulation
Resumo:
Dias RG, Alves MJ, Pereira AC, Rondon MU, dos Santos MR, Krieger JE, Krieger MH, Negrao CE. Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation. Physiol Genomics 37: 99-107, 2009. First published January 21, 2009; doi:10.1152/physiolgenomics.90368.2008.-The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). L-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.
Resumo:
Background and purpose: Tinnitus is a frequent disorder which is very difficult to treat and there is compelling evidence that tinnitus is associated with functional alterations in the central nervous system. Targeted modulation of tinnitus-related cortical activity has been proposed as a promising new treatment approach. We aimed to investigate both immediate and long-term effects of low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) in patients with tinnitus and normal hearing. Methods: Using a parallel design, 20 patients were randomized to receive either active or placebo stimulation over the left temporoparietal cortex for five consecutive days. Treatment results were assessed by using the Tinnitus Handicap Inventory. Ethyl cysteinate dimmer-single photon emission computed tomography (SPECT) imaging was performed before and 14 days after rTMS. Results: After active rTMS there was significant improvement of the tinnitus score as compared to sham rTMS for up to 6 months after stimulation. SPECT measurements demonstrated a reduction of metabolic activity in the inferior left temporal lobe after active rTMS. Conclusion: These results support the potential of rTMS as a new therapeutic tool for the treatment of chronic tinnitus, by demonstrating a significant reduction of tinnitus complaints over a period of at least 6 months and significant reduction of neural activity in the inferior temporal cortex, despite the stimulation applied on the superior temporal cortex.
Resumo:
Matrix metalloproteinases (MMPs) are crucial to the development and maintenance of healthy tissue and are mainly involved in extracellular matrix (ECM) remodeling of skeletal muscle. This study evaluated the effects of chronic allergic airway inflammation (CAAI), induced by ovalbumin, and aerobic training in the MMPs activity in mouse diaphragm muscle. Thirty mice were divided into 6 groups: 1) control; 2) ovalbumin; 3) treadmill trained at 50% of maximum speed; 4) ovalbumin and trained at 50%; 5) trained at 75%; 6) ovalbumin and trained at 75%. CAAI did not after MMPs activities in diaphragm muscle. Nevertheless, both treadmill aerobic trainings, associated with CAAI increased the MMP-2 and -1 activities. Furthermore, MMP-9 was not detected in any group. Together, these findings suggest an ECM remodeling in diaphragm muscle of asthmatic mice submitted to physical training. This result may be useful for a better understanding of functional significance of changes in the MMPs activity in response to physical training in asthma.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
Egr-1 and related proteins are inducible transcription factors within the brain recognizing the same consensus DNA sequence. Three Egr DNA-binding activities were observed in regions of the naive rat brain. Egr-1 was present in all brain regions examined. Bands composed, at least in part, of Egr-2 and Egr-3 were present in different relative amounts in the cerebral cortex, striatum, hippocampus, thalamus, and midbrain. All had similar affinity and specificity for the Egr consensus DNA recognition sequence. Administration of the convulsants NMDA, kainate, and pentylenetetrazole differentially induced Egr-1 and Egr-2/3 DNA-binding activities in the cerebral cortex, hippocampus, and cerebellum. All convulsants induced Egr-1 and Egr-2 immunoreactivity in the cerebral cortex and hippocampus. These data indicate that the members of the Egr family are regulated at different levels and may interact at promoters containing the Egr consensus sequence to fine tune a program of gene expression resulting from excitatory stimuli.
Resumo:
Background. Previous works showed potentially beneficial effects of a single session of peripheral nerve sensory stimulation (PSS) on motor function of a paretic hand in patients with subacute and chronic stroke. Objective. To investigate the influence of the use of different stimulus intensities over multiple sessions (repetitive PSS [RPSS]) paired with motor training. Methods. To address this question, 22 patients were randomized within the second month after a single hemispheric stroke in a parallel design to application of 2-hour RPSS at 1 of 2 stimulus intensities immediately preceding motor training, 3 times a week, for 1 month. Jebsen-Taylor test (JTT, primary endpoint measure), pinch force, Functional Independence Measure (FIM), and corticomotor excitability to transcranial magnetic stimulation were measured before and after the end of the treatment month. JTT, FIM scores, and pinch force were reevaluated 2 to 3 months after the end of the treatment. Results. Baseline motor function tests were comparable across the 2 RPSS intensity groups. JTT improved significantly in the lower intensity RPSS group but not in the higher intensity RPSS group at month 1. This difference between the 2 groups reduced by months 2 to 3. Conclusions. These results indicate that multiple sessions of RPSS could facilitate training effects on motor function after subacute stroke depending on the intensity of stimulation. It is proposed that careful dose-response studies are needed to optimize parameters of RPSS stimulation before designing costly, larger, double-blind, multicenter clinical trials.
Resumo:
Objective To assess MHC I and II expressions in muscle fibres of juvenile dermatomyositis (JDM) and compare with the expression in polymyositis (PM), dermatomyositis (DM) and dystrophy. Patients and methods Forty-eight JDM patients and 17 controls (8 PM, 5 DM and 4 dystrophy) were studied. The mean age at disease onset was 7.1 +/- 3.0 years and the mean duration of weakness before biopsy was 9.4 +/- 12.9 months. Routine histochemistry and immunohistochemistry (StreptABComplex/HRP) for MHC I and II (Dakopatts) were performed on serial frozen muscle sections in all patients. Mann-Whitney, Kruskal Wallis, chi-square and Fisher`s exact statistical methods were used. Results MHC I expression was positive in 47 (97.9%) JDM cases. This expression was observed independent of time of disease corticotherapy previous to muscle biopsy and to the grading of inflammation observed in clinical, laboratorial and histological parameters. The expression of MHC I was similar on JDM, PM and DM, and lower in dystrophy. On the other hand, MHC II expression was positive in just 28.2% of JDM cases was correlated to histological features as inflammatory infiltrate, increased connective tissue and VAS for global degree of abnormality (p < 0.05). MCH II expression was similar in DM/PM and lower in JDM and dystrophy, and it was based on the frequency of positive staining rather than to the degree of the MCH II expression. Conclusions MHC I expression in muscle fibres is a premature and late marker of JDM patient independent to corticotherapy, and MHC II expression was lower in JDM than in PM and DM.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Resumo:
Objective. Refractory, disabling pain associated with knee osteoarthritis (OA) is usually treated with total knee replacement. However, pain in these patients might be associated with central nervous sensitization rather than peripheral inflammation and injury. We evaluated the presence of hyperalgesia in patients scheduled for a total knee replacement due to knee osteoarthritis with refractory pain, and we assessed the impact of pressure pain threshold measurements (PPT) on pain, disability, and quality of life of these patients. Methods. Sixty-two female patients were compared with 22 age-matched healthy controls without reported pain for the last year. PPT was measured at the lower extremities subcutaneous dermatomes, over the vastus medialis, adductor longus, rectus femoris, vastus lateralis, tibialis anterior, peroneus longus, iliacus, quadratus lumborum and popliteus muscles and at the supraspinous ligaments from L1-L5, over the L5-S1 and S1-S2 sacral areas and at the pes anserinus bursae and patellar tendon. Results. Patients with knee OA had significantly lower PPT over all evaluated structures versus healthy control subjects (P < 0.001). Lower PPT values were correlated with higher pain intensity, higher disability scores, and with poorer quality of life, except for the role-emotional and general health status. Combined PPT values over the patellar tendon, at the S2 subcutaneous dermatome and at the adductor longus muscle were the best predictors for visual analog scale and Western Ontario and McMaster Universities Osteoarthritis Index pain scores. Conclusion. Patients with pain due to osteoarthritis who were scheduled for total knee replacement showed hyperalgesia of nervous system origin that negatively impacted pain, knee functional capacity, and most aspects of quality of life.
Muscle sympathetic nervous activity in depressed patients before and after treatment with sertraline
Resumo:
Background Sympathetic hyperactivity is one of the mechanisms involved in the increased cardiovascular risk associated with depression, and there is evidence that antidepressants decrease sympathetic activity. Objectives We tested the following two hypotheses: patients with major depressive disorder with high scores of depressive symptoms (HMDD) have augmented muscle sympathetic nervous system activity (MSNA) at rest and during mental stress compared with patients with major depressive disorder with low scores of depressive symptoms (LMDD) and controls; sertraline decreases MSNA in depressed patients. Methods Ten HMDD, nine LMDD and 11 body weight-matched controls were studied. MSNA was directly measured from the peroneal nerve using microneurography for 3 min at rest and 4 min during the Stroop color word test. For the LMDD and HMDD groups, the tests were repeated after treatment with sertraline (103.3 +/- 40 mg). Results Resting MSNA was significantly higher in the HMDD [29.1 bursts/min (SE 2.9)] compared with LMDD [19.9 (1.6)] and controls [22.2 (2.0)] groups (P=0.026 and 0.046, respectively). There was a significant positive correlation between resting MSNA and severity of depression. MSNA increased significantly and similarly during stress in all the studied groups. Sertraline significantly decreased resting MSNA in the LMDD group and MSNA during mental stress in LMDD and HMDD groups. Sertraline significantly decreased resting heart rate and heart rate response to mental stress in the HMDD group. Conclusion Moderate-to-severe depression is associated with increased MSNA. Sertraline treatment reduces MSNA at rest and during mental challenge in depressed patients, which may have prognostic implications in this group. J Hypertens 27:2429-2436 (c) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
There is an intimate relationship between the extracellular matrix (ECM) and smooth muscle cells within the airways. Few studies have comprehensively assessed the composition of different ECM components and its regulators within the airway smooth muscle (ASM) in asthma. With the aid of image analysis, the fractional areas of total collagen and elastic fibres were quantified within the ASM of 35 subjects with fatal asthma (FA) and compared with 10 nonfatal asthma (NFA) patients and 22 nonasthmatic control cases. Expression of collagen I and III, fibronectin, versican, matrix metalloproteinase (MMP)-1, -2, -9 and -12 and tissue inhibitor of metalloproteinase-1 and -2 was quantified within the ASM in 22 FA and 10 control cases. In the large airways of FA cases, the fractional area of elastic fibres within the ASM was increased compared with NFA and controls. Similarly, fibronectin, MMP-9 and MMP-12 were increased within the ASM in large airways of FA cases compared with controls. Elastic fibres were increased in small airways in FA only in comparison with NFA cases. There is altered extracellular matrix composition and a degradative environment within the airway smooth muscle in fatal asthma patients, which may have important consequences for the mechanical and synthetic functions of airway smooth muscle.
Resumo:
Background: Smooth muscle content is increased within the airway wall in patients with asthma and is likely to play a role in airway hyperresponsiveness. However, smooth muscle cells express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Objective: We examined the expression of contractile and structural proteins of smooth muscle cells, as well as extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Methods: Thirteen patients with asthma (mild persistent, atopic, nonsmoking) participated in this cross-sectional study. FEV1 % predicted, PC20 methacholine, and resistance of the respiratory system by the forced oscillation technique during tidal breathing and deep breath were measured. Within 1 week, a bronchoscopy was performed to obtain 6 bronchial biopsies that were immunuhistochemically stained for alpha-SM-actin, desmin, myosin light chain kinase (MLCK), myosin, calponin, vimentin, elastin, type III collagen, and fibronectin. The level of expression was determined by automated densitometry. Results: PC20 methacholine was inversely related to the expression of alpha-smooth muscle actin (r = -0.62), desmin (r = -0.56), and elastin (r = -0.78). In addition, FEV1% predicted was positively related and deep inspiration-induced bronchodilation inversely related to desmin (r = -0.60), MLCK (r = -0.60), and calponin (r = -0.54) expression. Conclusion: Airway hyperresponsiveness, FEV1% predicted, and airway responses to deep inspiration are associated with selective expression of airway smooth muscle proteins and components of the extracellular matrix.
Resumo:
Asthma is characterised by an increased airway smooth muscle (ASM) area (ASMarea) within the airway wall. The present study examined the relationship of factors including severity and duration of asthma to ASMarea. The perimeter of the basement membrane (PBM) and ASMarea were measured on transverse sections of large and small airways from post mortem cases of fatal (n=107) and nonfatal asthma (n=37) and from control subjects (n=69). The thickness of ASM (ASMarea/PBM) was compared between asthma groups using multivariate linear regression. When all airways were considered together, ASMarea/PBM (in millimetres) was increased in nonfatal (median 0.04; interquartile range 0.013-0.051; p=0.034) and fatal cases of asthma (0.048; 0.025-0.078; p<0.001) compared with controls (0.036; 0.024-0.042). Compared with cases of nonfatal asthma, ASMarea/PBM was greater in cases of fatal asthma in large (p<0.001) and medium (p<0.001), but not small, airways. ASMarea/PBM was not related to duration of asthma, age of onset of asthma, sex or smoking. No effect due to study centre, other than that due to sampling strategy, was found. The thickness of the ASM layer is increased in asthma and is related to the severity of asthma but not its duration.
Resumo:
In addition to pain and neurovegetative symptoms, patients with severe forms of complex regional pain syndrome (CRPS) develop a broad range of symptoms, including sensory disturbances, motor impairment and dystonic posturing. While most patients respond to medical therapy, some are considered refractory and become surgical candidates. To date, the most commonly used surgical procedure for CRPS has been spinal cord stimulation. This therapy often leads to important analgesic effects, but no sensory or motor improvements. We report on 2 patients with pain related to CRPS and severe functional deficits treated with motor cortex stimulation (MCS) who not only had significant analgesic effects, but also improvements in sensory and motor symptoms. In the long term (27 and 36 months after surgery), visual analog scale pain scores were improved by 60-70% as compared to baseline. There was also a significant increase in the range of motion in the joints of the affected limbs and an improvement in allodynia, hyperpathia and hypoesthesia. Positron emission tomography scan in both subjects revealed that MCS influenced regions involved in the circuitry of pain. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs. Muscle Nerve 42: 825-828, 2010